{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T13:35:22Z","timestamp":1726148122124},"publisher-location":"Cham","reference-count":39,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030908874"},{"type":"electronic","value":"9783030908881"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-90888-1_2","type":"book-chapter","created":{"date-parts":[[2021,12,2]],"date-time":"2021-12-02T09:13:49Z","timestamp":1638436429000},"page":"14-29","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Expertise-Aware Crowdsourcing Taxonomy Enrichment"],"prefix":"10.1007","author":[{"given":"Yuquan","family":"Wang","sequence":"first","affiliation":[]},{"given":"Yanpeng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yiming","family":"Mao","sequence":"additional","affiliation":[]},{"given":"Jifan","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Kaisheng","family":"Zeng","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Hou","sequence":"additional","affiliation":[]},{"given":"Juanzi","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Tang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,1]]},"reference":[{"issue":"5","key":"2_CR1","doi-asserted-by":"publisher","first-page":"570","DOI":"10.1016\/j.ipm.2015.04.006","volume":"51","author":"AB Abacha","year":"2015","unstructured":"Abacha, A.B., Zweigenbaum, P.: MEANS: a medical question-answering system combining NLP techniques and semantic web technologies. Inf. Process. Manag. 51(5), 570\u2013594 (2015)","journal-title":"Inf. Process. Manag."},{"key":"2_CR2","doi-asserted-by":"crossref","unstructured":"Boim, R., Greenshpan, O., Milo, T., Novgorodov, S., Polyzotis, N., Tan, W.C.: Asking the right questions in crowd data sourcing. In: ICDE 2012. IEEE (2012)","DOI":"10.1109\/ICDE.2012.122"},{"key":"2_CR3","doi-asserted-by":"crossref","unstructured":"Bragg, J., Weld, D.S., et al.: Crowdsourcing multi-label classification for taxonomy creation. In: First AAAI Conference on Human Computation and Crowdsourcing (2013)","DOI":"10.1609\/hcomp.v1i1.13091"},{"key":"2_CR4","doi-asserted-by":"crossref","unstructured":"Chilton, L.B., Little, G., Edge, D., Weld, D.S., Landay, J.A.: Cascade: crowdsourcing taxonomy creation. In: CHI 2013, pp. 1999\u20132008. ACM (2013)","DOI":"10.1145\/2470654.2466265"},{"issue":"1","key":"2_CR5","first-page":"20","volume":"28","author":"AP Dawid","year":"1979","unstructured":"Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the EM algorithm. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 28(1), 20\u201328 (1979)","journal-title":"J. Roy. Stat. Soc.: Ser. C (Appl. Stat.)"},{"key":"2_CR6","doi-asserted-by":"crossref","unstructured":"Demartini, G., Difallah, D.E., Cudr\u00e9-Mauroux, P.: ZenCrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In: WWW 2012 (2012)","DOI":"10.1145\/2187836.2187900"},{"key":"2_CR7","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"2_CR8","doi-asserted-by":"crossref","unstructured":"Duan, X., Tajima, K.: Improving multiclass classification in crowdsourcing by using hierarchical schemes. In: WWW 2019. ACM (2019)","DOI":"10.1145\/3308558.3313749"},{"key":"2_CR9","doi-asserted-by":"crossref","unstructured":"Han, T., Sun, H., Song, Y., Wang, Z., Liu, X.: Budgeted task scheduling for crowdsourced knowledge acquisition. In: CIKM 2017. ACM (2017)","DOI":"10.1145\/3132847.3133002"},{"key":"2_CR10","doi-asserted-by":"crossref","unstructured":"Han, X., Yu, P., Liu, Z., Sun, M., Li, P.: Hierarchical relation extraction with coarse-to-fine grained attention. In: EMNLP 2018 Proceedings, pp. 2236\u20132245 (2018)","DOI":"10.18653\/v1\/D18-1247"},{"key":"2_CR11","unstructured":"Hovy, E.: Combining and standardizing large-scale, practical ontologies for machine translation and other uses. In: LREC 1998 (1998)"},{"key":"2_CR12","unstructured":"Jing, Z., Wu, X.: Multi-label inference for crowdsourcing. In: KDD 2018. ACM (2018)"},{"key":"2_CR13","doi-asserted-by":"crossref","unstructured":"Jurgens, D., Pilehvar, M.T.: SemEval-2016 task 14: semantic taxonomy enrichment. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 1092\u20131102. ACL, San Diego, June 2016","DOI":"10.18653\/v1\/S16-1169"},{"issue":"1","key":"2_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1287\/opre.2013.1235","volume":"62","author":"DR Karger","year":"2014","unstructured":"Karger, D.R., Oh, S., Shah, D.: Budget-optimal task allocation for reliable crowdsourcing systems. Oper. Res. 62(1), 1\u201324 (2014)","journal-title":"Oper. Res."},{"key":"2_CR15","doi-asserted-by":"crossref","unstructured":"Kim, H.C., Ghahramani, Z.: Bayesian classifier combination. In: Artificial Intelligence and Statistics, pp. 619\u2013627 (2012)","DOI":"10.1007\/978-94-007-2863-9_58"},{"key":"2_CR16","doi-asserted-by":"publisher","first-page":"803","DOI":"10.1108\/IMDS-09-2014-0249","volume":"115","author":"C Lee","year":"2015","unstructured":"Lee, C., Chan, C., Ho, S., Choy, K., Ip, W.: Explore the feasibility of adopting crowdsourcing for innovative problem solving. Ind. Manag. Data Syst. 115, 803\u2013832 (2015)","journal-title":"Ind. Manag. Data Syst."},{"issue":"8","key":"2_CR17","doi-asserted-by":"publisher","first-page":"1221","DOI":"10.14778\/3389133.3389139","volume":"13","author":"Y Li","year":"2020","unstructured":"Li, Y., Wu, X., Jin, Y., Li, J., Li, G.: Efficient algorithms for crowd-aided categorization. Proc. VLDB Endow. 13(8), 1221\u20131233 (2020)","journal-title":"Proc. VLDB Endow."},{"key":"2_CR18","doi-asserted-by":"crossref","unstructured":"Littlestone, N., Warmuth, M.K., et al.: The weighted majority algorithm. University of California, Santa Cruz, Computer Research Laboratory (1989)","DOI":"10.1109\/SFCS.1989.63487"},{"key":"2_CR19","unstructured":"Liu, Q., Peng, J., Ihler, A.T.: Variational inference for crowdsourcing. In: Advances in Neural Information Processing Systems, pp. 692\u2013700 (2012)"},{"issue":"10","key":"2_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.14778\/2336664.2336676","volume":"5","author":"X Liu","year":"2012","unstructured":"Liu, X., Lu, M., Ooi, B.C., Shen, Y., Wu, S., Zhang, M.: CDAS: a crowdsourcing data analytics system. Proc. VLDB Endow. 5(10), 1\u201312 (2012)","journal-title":"Proc. VLDB Endow."},{"key":"2_CR21","doi-asserted-by":"crossref","unstructured":"Luu, A.T., Tay, Y., Hui, S.C., Ng, S.K.: Learning term embeddings for taxonomic relation identification using dynamic weighting neural network. In: EMNLP 2016 (2016)","DOI":"10.18653\/v1\/D16-1039"},{"key":"2_CR22","doi-asserted-by":"crossref","unstructured":"Mao, Y., et al.: Octet: Online catalog taxonomy enrichment with self-supervision. In: KDD 2020 (2020)","DOI":"10.1145\/3394486.3403274"},{"key":"2_CR23","doi-asserted-by":"crossref","unstructured":"Mavridis, P., Gross-Amblard, D., Mikl\u00f3s, Z.: Using hierarchical skills for optimized task assignment in knowledge-intensive crowdsourcing. In: WWW 2016 (2016)","DOI":"10.1145\/2872427.2883070"},{"key":"2_CR24","doi-asserted-by":"crossref","unstructured":"Meng, R., Tong, Y., Chen, L., Cao, C.C.: CrowdTC: Crowdsourced taxonomy construction. In: ICDM 2015, pp. 913\u2013918, November 2015","DOI":"10.1109\/ICDM.2015.77"},{"key":"2_CR25","unstructured":"Rangi, A., Franceschetti, M.: Multi-armed bandit algorithms for crowdsourcing systems with online estimation of workers\u2019 ability. In: AAMAS 2018 (2018)"},{"key":"2_CR26","doi-asserted-by":"crossref","unstructured":"Rebele, T., Suchanek, F.M., Hoffart, J., Biega, J., Kuzey, E., Weikum, G.: YAGO: a multilingual knowledge base from Wikipedia, WordNet, and GeoNames. In: ISWC 2016 (2016)","DOI":"10.1007\/978-3-319-46547-0_19"},{"key":"2_CR27","unstructured":"Roy, S.B., Lykourentzou, I., Thirumuruganathan, S., Amer-Yahia, S., Das, G.: Task assignment optimization in knowledge-intensive crowdsourcing. In: VLDB 2015 (2015)"},{"key":"2_CR28","doi-asserted-by":"crossref","unstructured":"Shen, J., Shen, Z., Xiong, C., Wang, C., Wang, K., Han, J.: TaxoExpan: Self-supervised taxonomy expansion with position-enhanced graph neural network. In: WWW 2020 (2020)","DOI":"10.1145\/3366423.3380132"},{"key":"2_CR29","doi-asserted-by":"publisher","first-page":"2521","DOI":"10.1007\/s10115-020-01475-y","volume":"62","author":"F Tao","year":"2020","unstructured":"Tao, F., Jiang, L., Li, C.: Label similarity-based weighted soft majority voting and pairing for crowdsourcing. Knowl. Inf. Syst. 62, 2521\u20132538 (2020). https:\/\/doi.org\/10.1007\/s10115-020-01475-y","journal-title":"Knowl. Inf. Syst."},{"key":"2_CR30","doi-asserted-by":"crossref","unstructured":"Van Horn, G., Branson, S., Loarie, S., Belongie, S., Perona, P.: Lean multiclass crowdsourcing. In: CVPR 2018 (2018)","DOI":"10.1109\/CVPR.2018.00287"},{"key":"2_CR31","doi-asserted-by":"crossref","unstructured":"Van Horn, G., et al.: The iNaturalist species classification and detection dataset. In: CVPR 2018 (2018)","DOI":"10.1109\/CVPR.2018.00914"},{"key":"2_CR32","doi-asserted-by":"crossref","unstructured":"Venanzi, M., Guiver, J., Kazai, G., Kohli, P., Shokouhi, M.: Community-based Bayesian aggregation models for crowdsourcing. In: WWW 2014, pp. 155\u2013164. ACM, New York (2014)","DOI":"10.1145\/2566486.2567989"},{"key":"2_CR33","unstructured":"Whitehill, J., Wu, T.F., Bergsma, J., Movellan, J.R., Ruvolo, P.L.: Whose vote should count more: optimal integration of labels from labelers of unknown expertise. In: Advances in Neural Information Processing Systems, pp. 2035\u20132043 (2009)"},{"key":"2_CR34","doi-asserted-by":"crossref","unstructured":"Yan, Y., Huang, S.J.: Cost-effective active learning for hierarchical multi-label classification. In: IJCAI, pp. 2962\u20132968 (2018)","DOI":"10.24963\/ijcai.2018\/411"},{"key":"2_CR35","doi-asserted-by":"crossref","unstructured":"Yu, J., et al.: MOOCCube: a large-scale data repository for NLP applications in MOOCs. In: ACL 2020 (2020)","DOI":"10.18653\/v1\/2020.acl-main.285"},{"issue":"11","key":"2_CR36","doi-asserted-by":"publisher","first-page":"2447","DOI":"10.1162\/NECO_a_00782","volume":"27","author":"H Zhang","year":"2015","unstructured":"Zhang, H., Ma, Y., Sugiyama, M.: Bandit-based task assignment for heterogeneous crowdsourcing. Neural Comput. 27(11), 2447\u20132475 (2015)","journal-title":"Neural Comput."},{"key":"2_CR37","doi-asserted-by":"crossref","unstructured":"Zhang, J., Sheng, V.S., Wu, J., Wu, X.: Multi-class ground truth inference in crowdsourcing with clustering. In: ICDE 2015, vol. 28 (2015)","DOI":"10.1109\/TKDE.2015.2504974"},{"key":"2_CR38","doi-asserted-by":"crossref","unstructured":"Zhang, X., Chen, M., Ji, G.: Factors influencing the crowd participation in knowledge-intensive crowdsourcing. In: ICCSE 2019. ACM, New York (2019)","DOI":"10.1145\/3371238.3371268"},{"key":"2_CR39","doi-asserted-by":"crossref","unstructured":"Zheng, Y., Wang, J., Li, G., Cheng, R., Feng, J.: QASCA: a quality-aware task assignment system for crowdsourcing applications. In: SIGMOD 2015 (2015)","DOI":"10.1145\/2723372.2749430"}],"container-title":["Lecture Notes in Computer Science","Web Information Systems Engineering \u2013 WISE 2021"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-90888-1_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,16]],"date-time":"2023-01-16T18:13:46Z","timestamp":1673892826000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-90888-1_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030908874","9783030908881"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-90888-1_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"1 January 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"WISE","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Web Information Systems Engineering","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Melbourne, VIC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 October 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"wise2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.wise-conferences.org\/2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"229","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"29","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}