{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T23:43:22Z","timestamp":1743032602322,"version":"3.40.3"},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030905248"},{"type":"electronic","value":"9783030905255"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-90525-5_48","type":"book-chapter","created":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T21:04:36Z","timestamp":1635800676000},"page":"553-563","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["A Survey on Object Detection Performance with Different Data Distributions"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-5613-0515","authenticated-orcid":false,"given":"Ramanpreet Singh","family":"Pahwa","sequence":"first","affiliation":[]},{"given":"Richard","family":"Chang","sequence":"additional","affiliation":[]},{"given":"Wang","family":"Jie","sequence":"additional","affiliation":[]},{"given":"Sankeerthana","family":"Satini","sequence":"additional","affiliation":[]},{"given":"Chandrashekar","family":"Viswanathan","sequence":"additional","affiliation":[]},{"given":"Du","family":"Yiming","sequence":"additional","affiliation":[]},{"given":"Vernica","family":"Jain","sequence":"additional","affiliation":[]},{"given":"Chen Tai","family":"Pang","sequence":"additional","affiliation":[]},{"given":"Wan Kong","family":"Wah","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,2]]},"reference":[{"key":"48_CR1","unstructured":"Bochkovskiy, A., Wang, C.Y., Liao, H.: YOLOv4: Optimal speed and accuracy of object detection. preprint arXiv:2004.10934 (2020)"},{"issue":"2","key":"48_CR2","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","volume":"88","author":"M Everingham","year":"2010","unstructured":"Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. (IJCV) 88(2), 303\u2013338 (2010)","journal-title":"Int. J. Comput. Vis. (IJCV)"},{"key":"48_CR3","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, pp. 1904\u20131916 (2015)","DOI":"10.1109\/TPAMI.2015.2389824"},{"key":"48_CR4","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., et al.: Microsoft COCO: Common objects in context. In: European Conference on Computer Vision (ECCV) (2014)","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"48_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-319-46448-0_2","volume-title":"Computer Vision \u2013 ECCV 2016","author":"W Liu","year":"2016","unstructured":"Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21\u201337. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2"},{"key":"48_CR6","doi-asserted-by":"crossref","unstructured":"Pahwa, R.S., et al.: Faultnet: faulty rail-valves detection using deep learning and computer vision. In: IEEE Intelligent Transportation Systems Conference (ITSC), pp. 559\u2013566 (2019)","DOI":"10.1109\/ITSC.2019.8917062"},{"key":"48_CR7","doi-asserted-by":"crossref","unstructured":"Pahwa, R.S., et al.: Machine-learning based methodologies for 3D X-Ray measurement, characterization and optimization for buried structures in advanced IC packages. In: International Wafer Level Packaging Conference (IWLPC), pp. 01\u201307 (2020)","DOI":"10.23919\/IWLPC52010.2020.9375903"},{"key":"48_CR8","doi-asserted-by":"crossref","unstructured":"Pahwa, R.S., et al.: Automated attribute measurements of buried package features in 3D X-ray images using deep learning. In: IEEE Electronic Components and Technology Conference (ECTC), pp. 2196\u20132204 (2021)","DOI":"10.1109\/ECTC32696.2021.00345"},{"key":"48_CR9","doi-asserted-by":"crossref","unstructured":"Pahwa, R.S., Lu, J., Jiang, N., Ng, T.T., Do, M.N.: Locating 3D object proposals: a depth-based online approach. In: IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 28, pp. 626\u2013639 (2018)","DOI":"10.1109\/TCSVT.2016.2616143"},{"key":"48_CR10","doi-asserted-by":"crossref","unstructured":"Pahwa, R.S., Ng, T.T., Do, M.N.: Tracking objects using 3D object proposals. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1657\u20131660. IEEE (2017)","DOI":"10.1109\/APSIPA.2017.8282298"},{"key":"48_CR11","doi-asserted-by":"crossref","unstructured":"Pham, Q.H., et al.: A*3D dataset: towards autonomous driving in challenging environments. In: IEEE Conference on Robotics and Automation (ICRA) (2020)","DOI":"10.1109\/ICRA40945.2020.9197385"},{"key":"48_CR12","unstructured":"Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. preprint arXiv:1804.02767 (2018)"},{"issue":"6","key":"48_CR13","doi-asserted-by":"publisher","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","volume":"39","author":"S Ren","year":"2017","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137\u20131149 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"48_CR14","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: Inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510\u20134520 (2018)","DOI":"10.1109\/CVPR.2018.00474"}],"container-title":["Lecture Notes in Computer Science","Social Robotics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-90525-5_48","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,11,2]],"date-time":"2021-11-02T00:10:19Z","timestamp":1635811819000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-90525-5_48"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030905248","9783030905255"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-90525-5_48","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"2 November 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICSR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Social Robotics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 November 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 November 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"socrob2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.colips.org\/conferences\/icsr2021\/wp\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"114","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"15","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"56% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.42","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0.49","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}