{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T12:53:58Z","timestamp":1726145638126},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030904241"},{"type":"electronic","value":"9783030904258"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-90425-8_3","type":"book-chapter","created":{"date-parts":[[2021,11,3]],"date-time":"2021-11-03T07:05:02Z","timestamp":1635923102000},"page":"33-44","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Dynamic Heuristic Set Selection for Cross-Domain Selection Hyper-heuristics"],"prefix":"10.1007","author":[{"given":"Ahmed","family":"Hassan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3902-5582","authenticated-orcid":false,"given":"Nelishia","family":"Pillay","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,4]]},"reference":[{"key":"3_CR1","doi-asserted-by":"crossref","unstructured":"Adriaensen, S., Brys, T., Now\u00e9, A.: Fair-share ILS: a simple state-of-the-art iterated local search hyperheuristic. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1303\u20131310 (2014)","DOI":"10.1145\/2576768.2598285"},{"key":"3_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1007\/978-3-540-31880-4_32","volume-title":"Evolutionary Multi-Criterion Optimization","author":"JE Alvarez-Benitez","year":"2005","unstructured":"Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO algorithm based exclusively on pareto dominance concepts. In: Coello Coello, C.A., Hern\u00e1ndez Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 459\u2013473. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/978-3-540-31880-4_32"},{"key":"3_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1007\/978-3-642-34413-8_26","volume-title":"Learning and Intelligent Optimization","author":"CY Chan","year":"2012","unstructured":"Chan, C.Y., Xue, F., Ip, W.H., Cheung, C.F.: A hyper-heuristic inspired by pearl hunting. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 349\u2013353. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-34413-8_26"},{"issue":"2","key":"3_CR4","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1016\/j.ejor.2019.07.073","volume":"285","author":"JH Drake","year":"2020","unstructured":"Drake, J.H., Kheiri, A., \u00d6zcan, E., Burke, E.K.: Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 285(2), 405\u2013428 (2020)","journal-title":"Eur. J. Oper. Res."},{"key":"3_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"631","DOI":"10.1007\/978-3-642-25566-3_49","volume-title":"Learning and Intelligent Optimization","author":"EK Burke","year":"2011","unstructured":"Burke, E.K., et al.: The cross-domain heuristic search challenge \u2013 an international research competition. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 631\u2013634. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-25566-3_49"},{"key":"3_CR6","doi-asserted-by":"crossref","unstructured":"Gutierrez-Rodr\u00edguez, A.E., et al.: Applying automatic heuristic-filtering to improve hyper-heuristic performance. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2638\u20132644. IEEE (2017)","DOI":"10.1109\/CEC.2017.7969626"},{"key":"3_CR7","unstructured":"Hassan, A., Pillay, N.: Java library for dynamic heuristic set selection, September 2021. https:\/\/github.com\/Al-Madina\/Dynamic-Heuristic-Sets"},{"key":"3_CR8","unstructured":"Hsiao, P.C., Chiang, T.C., Fu, L.C.: A VNS-based hyper-heuristic with adaptive computational budget of local search. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1\u20138. IEEE (2012)"},{"key":"3_CR9","unstructured":"Hyde, M., Ochoa, G., V\u00e1zquez-Rodr\u00edguez, J.A., Curtois, T.: A hyflex module for the max-sat problem. University of Nottingham, Technical report, pp. 3\u20136 (2011)"},{"key":"3_CR10","unstructured":"Meignan, D.: An evolutionary programming hyper-heuristic with co-evolution for CHeSC11. In: The 53rd Annual Conference of the UK Operational Research Society (OR53), vol. 3 (2011)"},{"key":"3_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"408","DOI":"10.1007\/978-3-642-32964-7_41","volume-title":"Parallel Problem Solving from Nature - PPSN XII","author":"M M\u0131s\u0131r","year":"2012","unstructured":"M\u0131s\u0131r, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: The effect of the set of low-level heuristics on the performance of selection hyper-heuristics. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 408\u2013417. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-32964-7_41"},{"key":"3_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1007\/978-3-642-34413-8_45","volume-title":"Learning and Intelligent Optimization","author":"M M\u0131s\u0131r","year":"2012","unstructured":"M\u0131s\u0131r, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: An intelligent hyper-heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 461\u2013466. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-34413-8_45"},{"key":"3_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1007\/978-3-642-29124-1_12","volume-title":"Evolutionary Computation in Combinatorial Optimization","author":"G Ochoa","year":"2012","unstructured":"Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136\u2013147. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-29124-1_12"},{"key":"3_CR14","series-title":"Natural Computing Series","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-96514-7","volume-title":"Hyper-Heuristics: Theory and Applications","author":"N Pillay","year":"2018","unstructured":"Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. Natural Computing Series, Springer, Heidelberg (2018). https:\/\/doi.org\/10.1007\/978-3-319-96514-7"},{"issue":"1","key":"3_CR15","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s10479-014-1688-1","volume":"239","author":"N Pillay","year":"2016","unstructured":"Pillay, N.: A review of hyper-heuristics for educational timetabling. Ann. Oper. Res. 239(1), 3\u201338 (2016)","journal-title":"Ann. Oper. Res."},{"issue":"3","key":"3_CR16","doi-asserted-by":"publisher","first-page":"972","DOI":"10.1016\/j.ejor.2017.01.042","volume":"260","author":"JA Soria-Alcaraz","year":"2017","unstructured":"Soria-Alcaraz, J.A., Ochoa, G., Sotelo-Figeroa, M.A., Burke, E.K.: A methodology for determining an effective subset of heuristics in selection hyper-heuristics. Eur. J. Oper. Res. 260(3), 972\u2013983 (2017)","journal-title":"Eur. J. Oper. Res."},{"key":"3_CR17","unstructured":"V\u00e1zquez-Rodr\u0131guez, J.A., Ochoa, G., Curtois, T., Hyde, M.: A hyflex module for the permutation flow shop problem. School of Computer Science, University of Nottingham, Technical report (2009)"}],"container-title":["Lecture Notes in Computer Science","Theory and Practice of Natural Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-90425-8_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T11:13:49Z","timestamp":1710242029000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-90425-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030904241","9783030904258"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-90425-8_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"4 November 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"TPNC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on the Theory and Practice of Natural Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tsukuba","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 December 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 December 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"tpnc2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/irdta.eu\/tpnc2020-2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"14","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"9","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}