{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T15:36:34Z","timestamp":1743003394055,"version":"3.40.3"},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030902346"},{"type":"electronic","value":"9783030902353"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-90235-3_38","type":"book-chapter","created":{"date-parts":[[2021,11,16]],"date-time":"2021-11-16T00:02:58Z","timestamp":1637020978000},"page":"435-446","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Minimizing Classification Errors in Imbalanced Dataset Using Means of Sampling"],"prefix":"10.1007","author":[{"given":"Ijaz","family":"Khan","sequence":"first","affiliation":[]},{"given":"Abdul Rahim","family":"Ahmad","sequence":"additional","affiliation":[]},{"given":"Nafaa","family":"Jabeur","sequence":"additional","affiliation":[]},{"given":"Mohammed Najah","family":"Mahdi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,16]]},"reference":[{"key":"38_CR1","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1016\/j.patcog.2019.02.023","volume":"91","author":"A Luque","year":"2019","unstructured":"Luque, A., et al.: The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recogn. 91, 216\u2013231 (2019)","journal-title":"Pattern Recogn."},{"key":"38_CR2","doi-asserted-by":"publisher","unstructured":"Tyagi, S., Mittal, S.: Sampling approaches for imbalanced data classification problem in machine learning. In: Proceedings of ICRIC 2019, pp. 209\u2013221. Springer (2020). https:\/\/doi.org\/10.1007\/978-3-030-29407-6_17","DOI":"10.1007\/978-3-030-29407-6_17"},{"issue":"1","key":"38_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40537-018-0151-6","volume":"5","author":"JL Leevy","year":"2018","unstructured":"Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N.: A survey on addressing high-class imbalance in big data. J. Big Data 5(1), 1\u201330 (2018). https:\/\/doi.org\/10.1186\/s40537-018-0151-6","journal-title":"J. Big Data"},{"key":"38_CR4","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1016\/j.ins.2019.07.070","volume":"505","author":"D Elreedy","year":"2019","unstructured":"Elreedy, D., Atiya, A.F.: A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance. Inf. Sci. 505, 32\u201364 (2019)","journal-title":"Inf. Sci."},{"key":"38_CR5","doi-asserted-by":"crossref","unstructured":"Raghuwanshi, B.S., Shukla, S.: SMOTE based class-specific extreme learning machine for imbalanced learning. Knowl.-Based Syst. 187, 104814 (2019)","DOI":"10.1016\/j.knosys.2019.06.022"},{"key":"38_CR6","doi-asserted-by":"crossref","unstructured":"Romero, C., Ventura, S.: Educational data mining and learning analytics: an updated survey. Wiley Interdisc. Rev. Data Mining Knowl. Disc. 10(3), e1355 (2020)","DOI":"10.1002\/widm.1355"},{"key":"38_CR7","doi-asserted-by":"publisher","unstructured":"Leitner, P., Khalil, M., Ebner, M.: Learning analytics in higher education\u2014a literature review. Learn. Anal. Fundaments Appl. Trends 94, 1\u201323 (2017). https:\/\/doi.org\/10.1007\/978-3-319-52977-6_1","DOI":"10.1007\/978-3-319-52977-6_1"},{"key":"38_CR8","doi-asserted-by":"crossref","unstructured":"Khan, I., et al.: A conceptual framework to aid attribute selection in machine learning student performance prediction models. Int. J. Interactive Mob. Technol. 15(15) (2021)","DOI":"10.3991\/ijim.v15i15.20019"},{"issue":"1","key":"38_CR9","first-page":"3","volume":"10","author":"E Osmanbegovic","year":"2012","unstructured":"Osmanbegovic, E., Suljic, M.: Data mining approach for predicting student performance. Econ. Rev. J. Econ. Bus. 10(1), 3\u201312 (2012)","journal-title":"Econ. Rev. J. Econ. Bus."},{"issue":"1","key":"38_CR10","first-page":"49","volume":"7","author":"R Asif","year":"2014","unstructured":"Asif, R., Merceron, A., Pathan, M.K.: Predicting student academic performance at degree level: a case study. Int. J. Intell. Syst. Appl. 7(1), 49 (2014)","journal-title":"Int. J. Intell. Syst. Appl."},{"issue":"1","key":"38_CR11","first-page":"61","volume":"13","author":"D Kabakchieva","year":"2013","unstructured":"Kabakchieva, D.: Predicting student performance by using data mining methods for classification. Cybern. Inf. Technol. 13(1), 61\u201372 (2013)","journal-title":"Cybern. Inf. Technol."},{"issue":"8","key":"38_CR12","first-page":"35","volume":"63","author":"V Ramesh","year":"2013","unstructured":"Ramesh, V., Parkavi, P., Ramar, K.: Predicting student performance: a statistical and data mining approach. Int. J. Comput. Appl. 63(8), 35\u201339 (2013)","journal-title":"Int. J. Comput. Appl."},{"key":"38_CR13","doi-asserted-by":"publisher","first-page":"500","DOI":"10.1016\/j.procs.2015.07.372","volume":"57","author":"P Kaur","year":"2015","unstructured":"Kaur, P., Singh, M., Josan, G.S.: Classification and prediction based data mining algorithms to predict slow learners in education sector. Procedia Comput. Sci. 57, 500\u2013508 (2015)","journal-title":"Procedia Comput. Sci."},{"key":"38_CR14","unstructured":"Ali, A., Shamsuddin, S.M., Ralescu, A.L.: Classification with class imbalance problem. Int. J. Advance Soft Compu. Appl. 5(3) (2013)"},{"key":"38_CR15","unstructured":"Huang, Y.-M., Du, S.-X.: Weighted support vector machine for classification with uneven training class sizes. In: 2005 International Conference on Machine Learning and Cybernetics. IEEE (2005)"},{"key":"38_CR16","doi-asserted-by":"crossref","unstructured":"Khan, I., et al.: Tracking student performance in introductory programming by means of machine learning. In: 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). IEEE (2019)","DOI":"10.1109\/ICBDSC.2019.8645608"},{"key":"38_CR17","doi-asserted-by":"publisher","unstructured":"Loyola-Gonz\u00e1lez, O., et al.: An empirical study of oversampling and undersampling methods for lcmine an emerging pattern based classifier. In: Mexican Conference on Pattern Recognition, Springer (2019). https:\/\/doi.org\/10.1007\/978-3-642-38989-4_27","DOI":"10.1007\/978-3-642-38989-4_27"},{"key":"38_CR18","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1016\/j.asoc.2014.05.023","volume":"22","author":"N Verbiest","year":"2014","unstructured":"Verbiest, N., et al.: Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection. Appl. Soft Comput. 22, 511\u2013517 (2014)","journal-title":"Appl. Soft Comput."},{"key":"38_CR19","doi-asserted-by":"crossref","unstructured":"Mohammed, R., Rawashdeh, J., Abdullah, M.: Machine learning with oversampling and undersampling techniques: overview study and experimental results. In: 2020 11th International Conference on Information and Communication Systems (ICICS). IEEE (2020)","DOI":"10.1109\/ICICS49469.2020.239556"},{"key":"38_CR20","doi-asserted-by":"publisher","unstructured":"Hernandez, J., Carrasco-Ochoa, J.A., Mart\u00ednez-Trinidad, J.F.: An empirical study of oversampling and undersampling for instance selection methods on imbalance datasets. In: Iberoamerican Congress on Pattern Recognition. Springer (2013). https:\/\/doi.org\/10.1007\/978-3-642-41822-8_33","DOI":"10.1007\/978-3-642-41822-8_33"},{"key":"38_CR21","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla, N.V., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321\u2013357 (2002)","journal-title":"J. Artif. Intell. Res."},{"key":"38_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.knosys.2015.12.006","volume":"98","author":"S Garc\u00eda","year":"2016","unstructured":"Garc\u00eda, S., Luengo, J., Herrera, F.: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowl.-Based Syst. 98, 1\u201329 (2016)","journal-title":"Knowl.-Based Syst."},{"key":"38_CR23","doi-asserted-by":"publisher","first-page":"863","DOI":"10.1613\/jair.1.11192","volume":"61","author":"A Fern\u00e1ndez","year":"2018","unstructured":"Fern\u00e1ndez, A., et al.: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863\u2013905 (2018)","journal-title":"J. Artif. Intell. Res."},{"key":"38_CR24","doi-asserted-by":"publisher","unstructured":"Elreedy, D., Atiya, A.F.: A novel distribution analysis for smote oversampling method in handling class imbalance. In: International Conference on Computational Science. Springer (2019). https:\/\/doi.org\/10.1007\/978-3-030-22744-9_18","DOI":"10.1007\/978-3-030-22744-9_18"},{"issue":"1","key":"38_CR25","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall, M., et al.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10\u201318 (2009)","journal-title":"ACM SIGKDD Explor. Newsl."},{"issue":"2","key":"38_CR26","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1007\/BF02985802","volume":"27","author":"J Franklin","year":"2005","unstructured":"Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intelligencer 27(2), 83\u201385 (2005). https:\/\/doi.org\/10.1007\/BF02985802","journal-title":"Math. Intelligencer"},{"key":"38_CR27","unstructured":"Tharwat, A.: Classification assessment methods. Appl. Comput. Inf. (2018)"}],"container-title":["Lecture Notes in Computer Science","Advances in Visual Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-90235-3_38","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,11,16]],"date-time":"2021-11-16T00:08:18Z","timestamp":1637021298000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-90235-3_38"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030902346","9783030902353"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-90235-3_38","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"16 November 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IVIC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Visual Informatics Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kajang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malaysia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 November 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 November 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ivic2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ivic2021.uniten.edu.my\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"114","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"52% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"One keynote paper is included. Conference held online.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}