{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T12:23:44Z","timestamp":1726143824450},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030898465"},{"type":"electronic","value":"9783030898472"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-89847-2_3","type":"book-chapter","created":{"date-parts":[[2021,10,19]],"date-time":"2021-10-19T10:03:32Z","timestamp":1634637812000},"page":"22-35","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Predicting Treatment Response in Prostate Cancer Patients Based on Multimodal PET\/CT for Clinical Decision Support"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3277-3596","authenticated-orcid":false,"given":"Sobhan","family":"Moazemi","sequence":"first","affiliation":[]},{"given":"Markus","family":"Essler","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1200-7248","authenticated-orcid":false,"given":"Thomas","family":"Schultz","sequence":"additional","affiliation":[]},{"given":"Ralph A.","family":"Bundschuh","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,10,20]]},"reference":[{"key":"3_CR1","unstructured":"Ferlay, J., et al.: Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer, Lyon. https:\/\/gco.iarc.fr\/today. Accessed 30 June 2021"},{"key":"3_CR2","doi-asserted-by":"publisher","unstructured":"Jin, S., Li, D., Wang, H., Yin, Y.: Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients. J. Appl. Clin. Med. Phys. 14(1), 55\u201361 (2013). https:\/\/doi.org\/10.1120\/jacmp.v14i1.3931","DOI":"10.1120\/jacmp.v14i1.3931"},{"key":"3_CR3","doi-asserted-by":"publisher","unstructured":"Bundschuh, R.A., et al.: Textural parameters of tumor heterogeneity in 18F-FDG PET\/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J. Nucl. Med. 55(6), 891\u2013897 (2014). https:\/\/doi.org\/10.2967\/jnumed.113.127340","DOI":"10.2967\/jnumed.113.127340"},{"issue":"3","key":"3_CR4","doi-asserted-by":"publisher","first-page":"422","DOI":"10.1007\/s00259-015-3180-9","volume":"43","author":"J-I Bang","year":"2015","unstructured":"Bang, J.-I., et al.: Prediction of neoadjuvant radiation chemotherapy response and survival using pretreatment [18F]FDG PET\/CT scans in locally advanced rectal cancer. Eur. J. Nucl. Med. Mol. Imaging 43(3), 422\u2013431 (2015). https:\/\/doi.org\/10.1007\/s00259-015-3180-9","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"},{"key":"3_CR5","doi-asserted-by":"publisher","unstructured":"Ypsilantis, P.P., et al.: Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One 10(9) (2015). https:\/\/doi.org\/10.1371\/journal.pone.0137036","DOI":"10.1371\/journal.pone.0137036"},{"key":"3_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1007\/978-3-319-67558-9_8","volume-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","author":"S Gorgi Zadeh","year":"2017","unstructured":"Gorgi Zadeh, S., et al.: CNNs enable accurate and fast segmentation of Drusen in optical coherence tomography. In: Cardoso, M.J. (ed.) DLMIA\/ML-CDS -2017. LNCS, vol. 10553, pp. 65\u201373. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-67558-9_8"},{"key":"3_CR7","doi-asserted-by":"publisher","unstructured":"Selvaganesan, K., et al.: Robust, atlas-free, automatic segmentation of brain MRI in health and disease. Heliyon. 5(2), e01226 (2019). https:\/\/doi.org\/10.1016\/j.heliyon.2019.e01226","DOI":"10.1016\/j.heliyon.2019.e01226"},{"key":"3_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"3_CR9","doi-asserted-by":"publisher","unstructured":"Hatt, M., et al.: The first MICCAI challenge on PET tumor segmentation. Med. Image Ana. 44, 177\u2013195 (2018). https:\/\/doi.org\/10.1016\/j.media.2017.12.007. ISSN 1361\u20138415","DOI":"10.1016\/j.media.2017.12.007"},{"key":"3_CR10","doi-asserted-by":"publisher","unstructured":"Li, L., Zhao, X., Lu, W., Tan, S.: Deep learning for variational multimodality tumor segmentation in PET\/CT. Neurocomputing 392, 277\u2013295 (2020). https:\/\/doi.org\/10.1016\/j.neucom.2018.10.099. ISSN 0925\u20132312","DOI":"10.1016\/j.neucom.2018.10.099"},{"key":"3_CR11","doi-asserted-by":"publisher","unstructured":"Liu, L., Cheng, J., Quan, Q., Wu, F.X., Wang, Y. P., Wang, J.: A survey on U-shaped networks in medical image segmentations. Neurocomputing 409, 244\u2013258 (2020). https:\/\/doi.org\/10.1016\/j.neucom.2020.05.070. ISSN 0925\u20132312","DOI":"10.1016\/j.neucom.2020.05.070"},{"key":"3_CR12","doi-asserted-by":"publisher","unstructured":"Beukinga, R.J., et al.: Predicting response to neoadjuvant chemoradiotherapy in esophageal cancer with textural features derived from pretreatment 18F-FDG PET\/CT imaging. J. Nucl. Med. 58(5), 723\u2013729 (2017). https:\/\/doi.org\/10.2967\/jnumed.116.180299","DOI":"10.2967\/jnumed.116.180299"},{"key":"3_CR13","doi-asserted-by":"publisher","unstructured":"Cheng, J.Z., et al.: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Scientific reports, vol. 6 (2016). https:\/\/doi.org\/10.1038\/srep24454","DOI":"10.1038\/srep24454"},{"key":"3_CR14","doi-asserted-by":"publisher","unstructured":"Moazemi, S., et al.: Decision-support for treatment with 177Lu-PSMA: machine learning predicts response with high accuracy based on PSMA-PET\/CT and clinical parameters. Ann. Transl. Med. 9,9, 818 (2021). https:\/\/doi.org\/10.21037\/atm-20-6446","DOI":"10.21037\/atm-20-6446"},{"key":"3_CR15","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1007\/BF01143137","volume":"11","author":"C Parisot","year":"1995","unstructured":"Parisot, C.: The DICOM standard. Int. J. Cardiac. Imag. 11, 171\u2013177 (1995). https:\/\/doi.org\/10.1007\/BF01143137","journal-title":"Int. J. Cardiac. Imag."},{"key":"3_CR16","doi-asserted-by":"publisher","unstructured":"Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems. tensorflow.org (2015). https:\/\/doi.org\/10.5281\/zenodo.4724125","DOI":"10.5281\/zenodo.4724125"},{"key":"3_CR17","unstructured":"Chollet, F.: Keras. GitHub repository (2015). https:\/\/github.com\/fchollet\/keras"},{"key":"3_CR18","doi-asserted-by":"publisher","unstructured":"Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297\u2013302 (1945). https:\/\/doi.org\/10.2307\/1932409","DOI":"10.2307\/1932409"},{"key":"3_CR19","doi-asserted-by":"publisher","unstructured":"van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104\u2013e107 (2017). https:\/\/doi.org\/10.1158\/0008-5472.CAN-17-0339","DOI":"10.1158\/0008-5472.CAN-17-0339"},{"key":"3_CR20","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1023\/A:1012487302797","volume":"46","author":"I Guyon","year":"2002","unstructured":"Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389\u2013422 (2002). https:\/\/doi.org\/10.1023\/A:1012487302797","journal-title":"Mach. Learn."},{"key":"3_CR21","unstructured":"Official Company Website for the InterView FUSION: Software. https:\/\/www.mediso.de\/Interview-fusion.html. Accessed 30 June 2021"},{"key":"3_CR22","unstructured":"Tomar, N.K.: Polyp Segmentation using UNET in TensorFlow 2.0. https:\/\/idiotdeveloper.com\/polyp-segmentation-using-unet-in-tensorflow-2\/. Accessed 30 June 2021"},{"key":"3_CR23","unstructured":"Wright, R.E.: Logistic regression. In: Grimm, L.G., Yarnold, P.R.: (eds.) Reading and Understanding Multivariate Statistics, pp. 217\u2013244. American Psychological Association (1995)"},{"key":"3_CR24","doi-asserted-by":"publisher","unstructured":"Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18\u201328 (1998). https:\/\/doi.org\/10.1109\/5254.708428","DOI":"10.1109\/5254.708428"},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"Simm, J., de Abril, I., Sugiyama, M.: Tree-based ensemble multi-task learning method for classification and regression 97(6) (2014). http:\/\/CRAN.R-project.org\/package=extraTrees","DOI":"10.1587\/transinf.E97.D.1677"},{"key":"3_CR26","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45, 5\u201332 (2001). https:\/\/doi.org\/10.1023\/A:1010933404324","journal-title":"Mach. Learn."},{"issue":"9","key":"3_CR27","doi-asserted-by":"publisher","first-page":"622","DOI":"10.3390\/diagnostics10090622","volume":"10","author":"S Moazemi","year":"2020","unstructured":"Moazemi, S., et al.: Machine learning facilitates hotspot classification in PSMA-PET\/CT with nuclear medicine specialist accuracy. Diagnostics (Basel, Switzerland) 10(9), 622 (2020). https:\/\/doi.org\/10.3390\/diagnostics10090622","journal-title":"Diagnostics (Basel, Switzerland)"},{"key":"3_CR28","doi-asserted-by":"publisher","first-page":"301","DOI":"10.3390\/tomography7030027","volume":"7","author":"A Erle","year":"2021","unstructured":"Erle, A., Moazemi, S., L\u00fctje, S., Essler, M., Schultz, T., Bundschuh, R.A.: Evaluating a machine learning tool for the classification of pathological uptake in whole-body PSMA-PET-CT scans. Tomography 7, 301\u2013312 (2021). https:\/\/doi.org\/10.3390\/tomography7030027","journal-title":"Tomography"},{"key":"3_CR29","doi-asserted-by":"publisher","unstructured":"Vallieres, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), e10117 (2017). https:\/\/doi.org\/10.1038\/s41598-017-10371-5","DOI":"10.1038\/s41598-017-10371-5"},{"issue":"2","key":"3_CR30","doi-asserted-by":"publisher","first-page":"186","DOI":"10.3390\/diagnostics11020186","volume":"11","author":"S Moazemi","year":"2021","unstructured":"Moazemi, S., Erle, A., L\u00fctje, S., Gaertner, F.C., Essler, M., Bundschuh, R.A.: Estimating the potential of radiomics features and radiomics signature from pretherapeutic PSMA-PET-CT scans and clinical data for prediction of overall survival when treated with 177Lu-PSMA. Diagnostics 11(2), 186 (2021). https:\/\/doi.org\/10.3390\/diagnostics11020186","journal-title":"Diagnostics"}],"container-title":["Lecture Notes in Computer Science","Multimodal Learning for Clinical Decision Support"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-89847-2_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,10,19]],"date-time":"2021-10-19T10:47:35Z","timestamp":1634640455000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-89847-2_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030898465","9783030898472"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-89847-2_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"20 October 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ML-CDS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Multimodal Learning for Clinical Decision Support","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ml-cds2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/mcbr-cds.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"16","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"63% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.19","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.46","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The workshop was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}