{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,6]],"date-time":"2025-04-06T01:49:43Z","timestamp":1743904183745,"version":"3.40.3"},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030891367"},{"type":"electronic","value":"9783030891374"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-89137-4_7","type":"book-chapter","created":{"date-parts":[[2021,10,10]],"date-time":"2021-10-10T22:42:46Z","timestamp":1633905766000},"page":"95-109","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Protecting Data Privacy in Federated Learning Combining Differential Privacy and Weak Encryption"],"prefix":"10.1007","author":[{"given":"Chuanyin","family":"Wang","sequence":"first","affiliation":[]},{"given":"Cunqing","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Min","family":"Li","sequence":"additional","affiliation":[]},{"given":"Neng","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Yifei","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zhuoxiang","family":"Shen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,10,10]]},"reference":[{"key":"7_CR1","unstructured":"McMahan, B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273\u20131282. PMLR (2017)"},{"key":"7_CR2","unstructured":"Ammad-Ud-Din, M., Ivannikova, E., Khan, S.A., et al.: Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint arXiv:1901.09888 (2019)"},{"key":"7_CR3","unstructured":"Hard, A., Rao, K., Mathews, R., et al.: Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018)"},{"key":"7_CR4","doi-asserted-by":"crossref","unstructured":"Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information leakage from collaborative deep learning. In: Proceedings of the. ACM SIGSAC Conference on Computer and Communications Security, vol. 2017, pp. 603\u2013618 (2017)","DOI":"10.1145\/3133956.3134012"},{"key":"7_CR5","doi-asserted-by":"crossref","unstructured":"Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, vol. (2000), pp. 439\u2013450 (2000)","DOI":"10.1145\/335191.335438"},{"key":"7_CR6","doi-asserted-by":"crossref","unstructured":"Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 739\u2013753. IEEE (2019)","DOI":"10.1109\/SP.2019.00065"},{"key":"7_CR7","doi-asserted-by":"crossref","unstructured":"Ishai, Y., Kushilevitz, E., Ostrovsky, R., et al.: Zero-knowledge from secure multiparty computation. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 21\u201330 (2007)","DOI":"10.1145\/1250790.1250794"},{"key":"7_CR8","doi-asserted-by":"crossref","unstructured":"Aono, Y., Hayashi, T., Trieu Phong, L., et al. Scalable and secure logistic regression via homomorphic encryption. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 142\u2013144 (2016)","DOI":"10.1145\/2857705.2857731"},{"key":"7_CR9","unstructured":"Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client level perspective. arXiv preprint arXiv:1712.07557 (2017)"},{"key":"7_CR10","doi-asserted-by":"crossref","unstructured":"Li, Q., Zhu, W., Wu, C., et al.: InvisibleFL: federated learning over non-informative intermediate updates against multimedia privacy leakages. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 753\u2013762 (2020)","DOI":"10.1145\/3394171.3413923"},{"key":"7_CR11","first-page":"2672","volume":"27","author":"I Goodfellow","year":"2014","unstructured":"Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672\u20132680 (2014)","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Truex, S., Liu, L., Gursoy, M.E., et al.: Demystifying membership inference attacks in machine learning as a service. IEEE Trans. Serv. Comput. (2019)","DOI":"10.1109\/TSC.2019.2897554"},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Melis, L., Song, C., De Cristofaro, E., et al.: Exploiting unintended feature leakage in collaborative learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 691\u2013706. IEEE (2019)","DOI":"10.1109\/SP.2019.00029"},{"key":"7_CR14","unstructured":"Bhowmick, A., Duchi, J., Freudiger, J., et al.: Protection against reconstruction and its applications in private federated learning. arXiv preprint arXiv:1812.00984 (2018)"},{"key":"7_CR15","doi-asserted-by":"crossref","unstructured":"Wang, Z., Song, M., Zhang, Z., et al.: Beyond inferring class representatives: user-level privacy leakage from federated learning. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 2512\u20132520. IEEE (2019)","DOI":"10.1109\/INFOCOM.2019.8737416"},{"key":"7_CR16","doi-asserted-by":"crossref","unstructured":"Canetti, R., Feige, U., Goldreich, O., et al.: Adaptively secure multi-party computation. In: Proceedings of the Twenty-Eighth aannual ACM Symposium on Theory of Computing, pp. 639\u2013648 (1996)","DOI":"10.1145\/237814.238015"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis: Linear regression and classification. In: Proceedings of the 2004 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, pp. 222\u2013233 (2004)","DOI":"10.1137\/1.9781611972740.21"},{"key":"7_CR18","doi-asserted-by":"crossref","unstructured":"Bonawitz, K., Ivanov, V., Kreuter, B., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the. ACM SIGSAC Conference on Computer and Communications Security, vol. 2017, pp. 1175\u20131191 (2017)","DOI":"10.1145\/3133956.3133982"},{"key":"7_CR19","doi-asserted-by":"crossref","unstructured":"Hao, M., Li, H., Xu, G., et al.: Towards efficient and privacy-preserving federated deep learning. In: ICC 2019\u20132019 IEEE International Conference on Communications (ICC), pp. 1\u20136. IEEE (2019)","DOI":"10.1109\/ICC.2019.8761267"},{"key":"7_CR20","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-5906-5","volume-title":"Encyclopedia of Cryptography and Security","year":"2011","unstructured":"van Tilborg, H.C.A., Jajodia, S. (eds.): Encyclopedia of Cryptography and Security. Springer, Boston, MA (2011). https:\/\/doi.org\/10.1007\/978-1-4419-5906-5"},{"key":"7_CR21","unstructured":"Augenstein, S., McMahan, H.B., Ramage, D., et al.: Generative models for effective ml on private, decentralized datasets. arXiv preprint arXiv:1911.06679 (2019)"},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Zhu, T., Philip, S.Y.: Applying differential privacy mechanism in artificial intelligence. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1601\u20131609. IEEE (2019)","DOI":"10.1109\/ICDCS.2019.00159"},{"key":"7_CR23","unstructured":"Xie, L., Lin, K., Wang, S., et al.: Differentially private generative adversarial network. arXiv preprint arXiv:1802.06739 (2018)"},{"key":"7_CR24","unstructured":"Luo, X., Zhu, X.: Exploiting defenses against GAN-based feature inference attacks in federated learning. arXiv preprint arXiv:2004.12571 (2020)"},{"key":"7_CR25","doi-asserted-by":"crossref","unstructured":"Choi, Y., Choi, M., Kim, M., et al.: Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789\u20138797 (2018)","DOI":"10.1109\/CVPR.2018.00916"},{"key":"7_CR26","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223\u20132232 (2017)","DOI":"10.1109\/ICCV.2017.244"},{"key":"7_CR27","doi-asserted-by":"crossref","unstructured":"Lim, W.Y.B., Luong, N.C., Hoang, D.T., et al.: Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv Tutorials (2020)","DOI":"10.1109\/COMST.2020.2986024"},{"key":"7_CR28","unstructured":"Kone\u010dn\u00fd, J., McMahan, B., Ramage, D.: Federated optimization: Distributed optimization beyond the datacenter. arXiv preprint arXiv:1511.03575 (2015)"},{"key":"7_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1007\/11681878_14","volume-title":"Theory of Cryptography","author":"C Dwork","year":"2006","unstructured":"Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265\u2013284. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11681878_14"},{"key":"7_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-540-79228-4_1","volume-title":"Theory and Applications of Models of Computation","author":"C Dwork","year":"2008","unstructured":"Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1\u201319. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-79228-4_1"}],"container-title":["Lecture Notes in Computer Science","Science of Cyber Security"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-89137-4_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T21:30:33Z","timestamp":1638394233000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-89137-4_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030891367","9783030891374"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-89137-4_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"10 October 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SciSec","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Science of Cyber Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shanghai","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 August 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 August 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"scisec2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/scisec.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}