{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T12:48:40Z","timestamp":1726145320856},"publisher-location":"Cham","reference-count":15,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030891275"},{"type":"electronic","value":"9783030891282"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-89128-2_18","type":"book-chapter","created":{"date-parts":[[2021,10,31]],"date-time":"2021-10-31T03:02:47Z","timestamp":1635649367000},"page":"185-194","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Patch-Level Nuclear Pleomorphism Scoring Using Convolutional Neural Networks"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1136-3961","authenticated-orcid":false,"given":"Leonardo O.","family":"Iheme","sequence":"first","affiliation":[]},{"given":"Gizem","family":"Solmaz","sequence":"additional","affiliation":[]},{"given":"Fatma","family":"Tokat","sequence":"additional","affiliation":[]},{"given":"Sercan","family":"\u00c7ayir","sequence":"additional","affiliation":[]},{"given":"Engin","family":"Bozaba","sequence":"additional","affiliation":[]},{"given":"\u00c7isem","family":"Yazici","sequence":"additional","affiliation":[]},{"given":"G\u00fcl\u015fah","family":"\u00d6zsoy","sequence":"additional","affiliation":[]},{"given":"Samet","family":"Ayalti","sequence":"additional","affiliation":[]},{"given":"Cavit Kerem","family":"Kayhan","sequence":"additional","affiliation":[]},{"given":"\u00dcmit","family":"\u0130nce","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,10,31]]},"reference":[{"key":"18_CR1","unstructured":"Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. In: Advances in Neural Information Processing Systems, vol. 2017-Dec, pp. 4468\u20134476 (2017)"},{"key":"18_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1007\/978-3-642-40763-5_51","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2013","author":"DC Cire\u015fan","year":"2013","unstructured":"Cire\u015fan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411\u2013418. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-40763-5_51"},{"key":"18_CR3","doi-asserted-by":"publisher","unstructured":"Cosatto, E., Miller, M., Graf, H.P., Meyer, J.S.: Grading nuclear pleomorphism on histological micrographs. In: Proceedings - International Conference on Pattern Recognition (2008). https:\/\/doi.org\/10.1109\/icpr.2008.4761112","DOI":"10.1109\/icpr.2008.4761112"},{"key":"18_CR4","doi-asserted-by":"publisher","unstructured":"Epstein, J.I., Allsbrook, W.C., Amin, M.B., Egevad, L.L.: The 2005 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 29(9), 1228\u20131242 (2005). https:\/\/doi.org\/10.1097\/01.pas.0000173646.99337.b1, http:\/\/journals.lww.com\/00000478-200509000-00015","DOI":"10.1097\/01.pas.0000173646.99337.b1"},{"key":"18_CR5","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016","DOI":"10.1109\/CVPR.2016.90"},{"key":"18_CR6","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261\u20132269 (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"18_CR7","doi-asserted-by":"publisher","unstructured":"Jiang, F., et al.: Artificial intelligence in healthcare: past, present and future, December 2017. https:\/\/doi.org\/10.1136\/svn-2017-000101, https:\/\/www.ncbi.nlm.nih.gov\/pmc\/articles\/PMC5829945\/","DOI":"10.1136\/svn-2017-000101"},{"key":"18_CR8","doi-asserted-by":"publisher","unstructured":"King, G., Zeng, L.: Logistic regression in rare events data. Technical Report, vol. 2 (2001). https:\/\/doi.org\/10.1093\/oxfordjournals.pan.a004868, http:\/\/gking.harvard.edu","DOI":"10.1093\/oxfordjournals.pan.a004868"},{"issue":"6","key":"18_CR9","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84\u201390 (2017)","journal-title":"Commun. ACM"},{"issue":"11","key":"18_CR10","doi-asserted-by":"publisher","first-page":"2620","DOI":"10.1109\/TMI.2019.2907049","volume":"38","author":"T Qaiser","year":"2019","unstructured":"Qaiser, T., Rajpoot, N.M.: Learning where to see: a novel attention model for automated immunohistochemical scoring. IEEE Trans. Med. Imaging 38(11), 2620\u20132631 (2019)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"18_CR11","unstructured":"Qu, G.: Automatic pleomorphism grading for breast cancer image. Master\u2019s thesis, University of Florida (2018)"},{"issue":"19","key":"18_CR12","doi-asserted-by":"publisher","first-page":"3153","DOI":"10.1200\/JCO.2007.15.5986","volume":"26","author":"EA Rakha","year":"2008","unstructured":"Rakha, E.A., et al.: Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J. Clin. Oncol. 26(19), 3153\u20133158 (2008). https:\/\/doi.org\/10.1200\/JCO.2007.15.5986","journal-title":"J. Clin. Oncol."},{"key":"18_CR13","unstructured":"Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of Machine Learning Research, PMLR, Atlanta, Georgia, USA, 17\u201319 June 2013, vol. 28\u20133, pp. 1139\u20131147 (2013)"},{"key":"18_CR14","doi-asserted-by":"publisher","unstructured":"Wedemeyer, G.: Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Technical Report, vol. 4 (2010). https:\/\/doi.org\/10.1043\/1543-2165-133.10.1515, www.cap.org\/cancerprotocols","DOI":"10.1043\/1543-2165-133.10.1515"},{"key":"18_CR15","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1038\/s42256-019-0052-1","volume":"1","author":"Z Zhang","year":"2019","unstructured":"Zhang, Z., et al.: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell. 1, 236\u2013245 (2019). https:\/\/doi.org\/10.1038\/s42256-019-0052-1","journal-title":"Nat. Mach. Intell."}],"container-title":["Lecture Notes in Computer Science","Computer Analysis of Images and Patterns"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-89128-2_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,10,31]],"date-time":"2021-10-31T03:04:37Z","timestamp":1635649477000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-89128-2_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030891275","9783030891282"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-89128-2_18","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"31 October 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CAIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computer Analysis of Images and Patterns","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"caip2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/cyprusconferences.org\/caip2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyAcademia","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"129","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"87","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}