{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T03:56:11Z","timestamp":1743134171442,"version":"3.40.3"},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030890940"},{"type":"electronic","value":"9783030890957"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-89095-7_73","type":"book-chapter","created":{"date-parts":[[2021,10,19]],"date-time":"2021-10-19T05:01:04Z","timestamp":1634619664000},"page":"769-779","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Human Action Recognition Using Skeleton Data from Two-Stage Pose Estimation Model"],"prefix":"10.1007","author":[{"given":"Ruiqi","family":"Sun","sequence":"first","affiliation":[]},{"given":"Qin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jiamin","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Hui","family":"Chai","sequence":"additional","affiliation":[]},{"given":"Yueyang","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,10,19]]},"reference":[{"issue":"2","key":"73_CR1","doi-asserted-by":"publisher","first-page":"201","DOI":"10.3758\/BF03212378","volume":"14","author":"G Johansson","year":"1973","unstructured":"Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201\u2013211 (1973)","journal-title":"Percept. Psychophys."},{"key":"73_CR2","unstructured":"Vieira, A.W., Schwartz, W.R., Campos, M., et al.: Distance matrices as invariant features for classifying MoCap data. In: International Conference on Pattern Recognition, pp. 2934\u20132937. IEEE (2012)"},{"key":"73_CR3","unstructured":"Barnachon, M., Bouakaz, S., Boufama, B., et al.: Human actions recognition from streamed Motion Capture. In: International Conference on Pattern Recognition, pp. 3807\u20133810. IEEE (2012)"},{"key":"73_CR4","doi-asserted-by":"crossref","unstructured":"Ma, H.T., Zhang, X., Yang, H., et al.: SVM-based approach for human daily motion recognition. In: TENCON 2015\u20132015 IEEE Region 10 Conference, pp. 1\u20134. IEEE (2015)","DOI":"10.1109\/TENCON.2015.7372947"},{"key":"73_CR5","doi-asserted-by":"crossref","unstructured":"Shotton, J., Fitzgibbon, A., Cook, M., et al.: Real-time human pose recognition in parts from single depth images. In: 24th Computer Vision and Pattern Recognition, pp. 1297\u20131304. IEEE, Piscataway (2011)","DOI":"10.1109\/CVPR.2011.5995316"},{"key":"73_CR6","unstructured":"Lu, X., Chen, C.-C., Aggarwal, J.K.: View invariant human action recognition using histograms of 3D joints. In: Computer Vision and Pattern Recognition Workshops, pp. 20\u201327. IEEE (2012)"},{"key":"73_CR7","doi-asserted-by":"crossref","unstructured":"Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: Computer Vision and Pattern Recognition Workshops, pp. 9\u201314. IEEE (2010)","DOI":"10.1109\/CVPRW.2010.5543273"},{"key":"73_CR8","unstructured":"Yang, X., Tian Y.: EigenJoints-based action recognition using na\u00efve bayes nearest neighbor. In: Computer Vision and Pattern Recognition Workshops, pp. 14\u201319. IEEE (2010)"},{"issue":"1","key":"73_CR9","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1016\/j.jvcir.2013.03.001","volume":"25","author":"X Yang","year":"2014","unstructured":"Yang, X., Tian, Y.: Effective 3D action recognition using EigenJoints. J. Vis. Commun. Image Represent. 25(1), 2\u201311 (2014)","journal-title":"J. Vis. Commun. Image Represent."},{"issue":"6","key":"73_CR10","doi-asserted-by":"publisher","first-page":"3479","DOI":"10.1007\/s11042-015-2448-1","volume":"75","author":"G Lu","year":"2016","unstructured":"Lu, G., Zhou, Y., Li, X., et al.: Efficient action recognition via local position offset of 3d skeletal body joints. Multimedia Tools Appl. 75(6), 3479\u20133494 (2016)","journal-title":"Multimedia Tools Appl."},{"key":"73_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"816","DOI":"10.1007\/978-3-319-46487-9_50","volume-title":"Computer Vision \u2013 ECCV 2016","author":"J Liu","year":"2016","unstructured":"Liu, J., Shahroudy, A., Dong, X., Wang, G.: Spatio-temporal LSTM with trust gates for 3D human action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 816\u2013833. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46487-9_50"},{"key":"73_CR12","doi-asserted-by":"crossref","unstructured":"Li, C., Zhong, X., Xie, D., et al.: Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation. In: 27th International Joint Conference on Artificial Intelligence, pp. 3807\u20133810. IEEE (2018)","DOI":"10.24963\/ijcai.2018\/109"},{"key":"73_CR13","doi-asserted-by":"crossref","unstructured":"Wei, S.E., Ramakrishna, V., Kanade, T., et al.: Convolutional pose machines. In: Conference on Computer Vision and Pattern Recognition, pp. 4727\u20134732. IEEE (2016)","DOI":"10.1109\/CVPR.2016.511"},{"key":"73_CR14","doi-asserted-by":"crossref","unstructured":"Chen, Y., Wang, Z., Peng, Y., et al.: Cascaded pyramid network for multi-person pose estimation. In: Conference on Pattern Recognition, pp. 7103\u20137112. IEEE (2018)","DOI":"10.1109\/CVPR.2018.00742"},{"key":"73_CR15","doi-asserted-by":"crossref","unstructured":"Bin, X., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: European Conference on Computer Vision, pp. 472-487. IEEE (2018)","DOI":"10.1007\/978-3-030-01231-1_29"},{"key":"73_CR16","doi-asserted-by":"crossref","unstructured":"Liu, W., Anguelov, D., Erhan, D., et al.: SSD: single shot multibox detector. In: European Conference on Computer Vision, pp. 21-37. IEEE (2016)","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"73_CR17","unstructured":"Bengio, Y., Glorot, X.: Understanding the difficulty of training deep feed forward neural networks. In: 13th International Conference on Artificial Intelligence and Statistics, pp. 249\u2013256. IEEE (2010)"},{"issue":"2","key":"73_CR18","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","volume":"88","author":"M Everingham","year":"2010","unstructured":"Everingham, M., Gool, L.V., Williams, C., et al.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303\u2013338 (2010)","journal-title":"Int. J. Comput. Vision"},{"key":"73_CR19","doi-asserted-by":"crossref","unstructured":"Andriluka, M., Pishchulin, L., Gehler, P., et al.: 2D human pose estimation: new benchmark and state of the art analysis. In: Computer Vision and Pattern Recognition, pp. 3686\u20133693. IEEE( 2014)","DOI":"10.1109\/CVPR.2014.471"},{"key":"73_CR20","doi-asserted-by":"crossref","unstructured":"Johnson, S., Everingham, M.: Learning effective human pose estimation from inaccurate annotation. In: Computer Vision and Pattern Recognition, pp. 1465\u20131472. IEEE (2016)","DOI":"10.1109\/CVPR.2011.5995318"}],"container-title":["Lecture Notes in Computer Science","Intelligent Robotics and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-89095-7_73","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T04:34:24Z","timestamp":1725942864000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-89095-7_73"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030890940","9783030890957"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-89095-7_73","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"19 October 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIRA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Robotics and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Yantai","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 October 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icira2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.icira2021.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}