{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T10:03:03Z","timestamp":1743156183249,"version":"3.40.3"},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030880064"},{"type":"electronic","value":"9783030880071"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-88007-1_32","type":"book-chapter","created":{"date-parts":[[2021,10,21]],"date-time":"2021-10-21T23:06:25Z","timestamp":1634857585000},"page":"385-396","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Improve Semantic Correspondence by Filtering the Correlation Scores in both Image Space and Hough Space"],"prefix":"10.1007","author":[{"given":"Shihua","family":"Xiong","sequence":"first","affiliation":[]},{"given":"Yonggang","family":"Lu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,10,22]]},"reference":[{"issue":"10","key":"32_CR1","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1145\/2001269.2001293","volume":"54","author":"S Agarwal","year":"2011","unstructured":"Agarwal, S., et al.: Building Rome in a day. Commun. ACM 54(10), 105\u2013112 (2011)","journal-title":"Commun. ACM"},{"key":"32_CR2","doi-asserted-by":"crossref","unstructured":"Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886\u2013893 (2005)","DOI":"10.1109\/CVPR.2005.177"},{"key":"32_CR3","doi-asserted-by":"crossref","unstructured":"Deng, J.: ImageNet: A large-scale hierarchical image database. In: Proceedings CVPR 2009 (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"32_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/3-540-47977-5_2","volume-title":"Computer Vision \u2014 ECCV 2002","author":"G Donato","year":"2002","unstructured":"Donato, G., Belongie, S.: Approximate thin plate spline mappings. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 21\u201331. Springer, Heidelberg (2002). https:\/\/doi.org\/10.1007\/3-540-47977-5_2"},{"key":"32_CR5","doi-asserted-by":"crossref","unstructured":"Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2758\u20132766, December 2015","DOI":"10.1109\/ICCV.2015.316"},{"issue":"1","key":"32_CR6","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1007\/s11263-014-0733-5","volume":"111","author":"M Everingham","year":"2015","unstructured":"Everingham, M., Eslami, S., Gool, L.V., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98\u2013136 (2015)","journal-title":"Int. J. Comput. Vision"},{"key":"32_CR7","doi-asserted-by":"crossref","unstructured":"Ham, B., Cho, M., Schmid, C., Ponce, J.: Proposal flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3475\u20133484, June 2016","DOI":"10.1109\/CVPR.2016.378"},{"issue":"7","key":"32_CR8","doi-asserted-by":"publisher","first-page":"1711","DOI":"10.1109\/TPAMI.2017.2724510","volume":"40","author":"B Ham","year":"2017","unstructured":"Ham, B., Cho, M., Schmid, C., Ponce, J.: Proposal flow: semantic correspondences from object proposals. IEEE Trans. Pattern Anal. Mach. Intell. 40(7), 1711\u20131725 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"32_CR9","doi-asserted-by":"crossref","unstructured":"Han, K., et al.: ScNet: learning semantic correspondence. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1831\u20131840, October 2017","DOI":"10.1109\/ICCV.2017.203"},{"key":"32_CR10","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. IEEE (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"32_CR11","doi-asserted-by":"crossref","unstructured":"Huang, S., Wang, Q., Zhang, S., Yan, S., He, X.: Dynamic context correspondence network for semantic alignment. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 2010\u20132019, October 2019","DOI":"10.1109\/ICCV.2019.00210"},{"key":"32_CR12","doi-asserted-by":"crossref","unstructured":"Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2462\u20132470, July 2017","DOI":"10.1109\/CVPR.2017.179"},{"key":"32_CR13","unstructured":"Kim, S., Lin, S., Jeon, S., Min, D., Sohn, K.: Recurrent transformer networks for semantic correspondence. In: Neural Information Processing Systems (NeurIPS) (2018)"},{"key":"32_CR14","doi-asserted-by":"crossref","unstructured":"Kim, S., Min, D., Lin, S., Sohn, K.: DCTM: discrete-continuous transformation matching for semantic flow. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4529\u20134538, October 2017","DOI":"10.1109\/ICCV.2017.485"},{"key":"32_CR15","doi-asserted-by":"crossref","unstructured":"Laskar, Z., Tavakoli, H.R., Kannala, J.: Semantic matching by weakly supervised 2D point set registration. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1061\u20131069 (2019)","DOI":"10.1109\/WACV.2019.00118"},{"key":"32_CR16","doi-asserted-by":"crossref","unstructured":"Lee, J., Kim, D., Ponce, J., Ham, B.: SFNet: learning object-aware semantic correspondence. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2278\u20132287, June 2019","DOI":"10.1109\/CVPR.2019.00238"},{"key":"32_CR17","doi-asserted-by":"crossref","unstructured":"Liu, Y., Zhu, L., Yamada, M., Yang, Y.: Semantic correspondence as an optimal transport problem. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4463\u20134472, June 2020","DOI":"10.1109\/CVPR42600.2020.00452"},{"key":"32_CR18","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"32_CR19","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Low","year":"2004","unstructured":"Low, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91\u2013110 (2004)","journal-title":"Int. J. Comput. Vision"},{"key":"32_CR20","doi-asserted-by":"crossref","unstructured":"Min, J., Lee, J., Ponce, J., Cho, M.: Hyperpixel flow: semantic correspondence with multi-layer neural features. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 3395\u20133404, October 2019","DOI":"10.1109\/ICCV.2019.00349"},{"key":"32_CR21","unstructured":"Min, J., Lee, J., Ponce, J., Cho, M.: Spair-71k: a large-scale benchmark for semantic correspondence (2019)"},{"key":"32_CR22","doi-asserted-by":"crossref","unstructured":"Rocco, I., Arandjelovic, R., Sivic, J.: Convolutional neural network architecture for geometric matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6148\u20136157, July 2017","DOI":"10.1109\/CVPR.2017.12"},{"key":"32_CR23","doi-asserted-by":"crossref","unstructured":"Rocco, I., Arandjelovic, R., Sivic, J.: End-to-end weakly-supervised semantic alignment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6917\u20136925, June 2018","DOI":"10.1109\/CVPR.2018.00723"},{"key":"32_CR24","doi-asserted-by":"publisher","unstructured":"Rocco, I., Cimpoi, M., Arandjelovic, R., Torii, A., Pajdla, T., Sivic, J.: NCNet: neighbourhood consensus networks for estimating image correspondences. IEEE Trans. Pattern Anal. Mach. Intell. PP, 1\u201314 (2020). https:\/\/doi.org\/10.1109\/TPAMI.2020.3016711","DOI":"10.1109\/TPAMI.2020.3016711"},{"key":"32_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"367","DOI":"10.1007\/978-3-030-01225-0_22","volume-title":"Computer Vision \u2013 ECCV 2018","author":"PH Seo","year":"2018","unstructured":"Seo, P.H., Lee, J., Jung, D., Han, B., Cho, M.: Attentive semantic alignment with offset-aware correlation Kernels. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 367\u2013383. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01225-0_22"},{"key":"32_CR26","doi-asserted-by":"crossref","unstructured":"Taniai, T., Sinha, S.N., Sato, Y.: Joint recovery of dense correspondence and cosegmentation in two images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4246\u20134255, June 2016","DOI":"10.1109\/CVPR.2016.460"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-88007-1_32","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T13:10:44Z","timestamp":1725973844000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-88007-1_32"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030880064","9783030880071"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-88007-1_32","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"22 October 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 October 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 November 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.prcv.cn\/2021\/index_en.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"513","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"201","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"39% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"There were 30 oral and 171 poster presentations at the conference.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}