{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T19:31:20Z","timestamp":1743103880144,"version":"3.40.3"},"publisher-location":"Cham","reference-count":16,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030878719"},{"type":"electronic","value":"9783030878726"}],"license":[{"start":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T00:00:00Z","timestamp":1632268800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T00:00:00Z","timestamp":1632268800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-87872-6_4","type":"book-chapter","created":{"date-parts":[[2021,9,21]],"date-time":"2021-09-21T04:02:39Z","timestamp":1632196959000},"page":"33-40","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Attacks Detection on Sampled Netflow Traffic Through Image Analysis with Convolutional Neural Networks (CNN)"],"prefix":"10.1007","author":[{"given":"Alberto Fern\u00e1ndez","family":"de Retana","sequence":"first","affiliation":[]},{"given":"Alberto","family":"Miranda-Garc\u00eda","sequence":"additional","affiliation":[]},{"given":"\u00c1ngel Manuel","family":"Guerrero","sequence":"additional","affiliation":[]},{"given":"Camino","family":"Fern\u00e1ndez-Llamas","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,22]]},"reference":[{"key":"4_CR1","first-page":"49","volume":"36","author":"S Abdulla","year":"2011","unstructured":"Abdulla, S., Ramadass, S., Taha, A., Amer, N.: Setting a worm attack warning by using machine learning to classify netflow data. Int. J. Comput. Appl. 36, 49\u201356 (2011)","journal-title":"Int. J. Comput. Appl."},{"key":"4_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2016\/2048302","volume":"2016","author":"T Bakhshi","year":"2016","unstructured":"Bakhshi, T., Ghita, B.: On internet traffic classification: a two-phased machine learning approach. J. Comput. Netw. Commun. 2016, 1\u201321 (2016)","journal-title":"J. Comput. Netw. Commun."},{"issue":"24","key":"4_CR3","doi-asserted-by":"publisher","first-page":"7294","DOI":"10.3390\/s20247294","volume":"20","author":"A Campazas-Vega","year":"2020","unstructured":"Campazas-Vega, A., Crespo-Mart\u00ednez, I.S., Guerrero Higueras, A.M., Fern\u00e1ndez Llamas, C.: Flow-data gathering using netflow sensors for fitting malicious-traffic detection models. Sensors 20(24), 7294 (2020)","journal-title":"Sensors"},{"issue":"5","key":"4_CR4","doi-asserted-by":"publisher","first-page":"1083","DOI":"10.1016\/j.comnet.2010.11.002","volume":"55","author":"V Carela-Espa\u00f1ol","year":"2011","unstructured":"Carela-Espa\u00f1ol, V., Barlet-Ros, P., Cabellos-Aparicio, A., Sol\u00e9-Pareta, J.: Analysis of the impact of sampling on netflow traffic classification. Comput. Netw. 55(5), 1083\u20131099 (2011)","journal-title":"Comput. Netw."},{"issue":"7","key":"4_CR5","doi-asserted-by":"publisher","first-page":"772","DOI":"10.1016\/j.comcom.2012.01.016","volume":"35","author":"P Casas","year":"2012","unstructured":"Casas, P., Mazel, J., Owezarski, P.: Unsupervised network intrusion detection systems: detecting the unknown without knowledge. Comput. Commun. 35(7), 772\u2013783 (2012)","journal-title":"Comput. Commun."},{"key":"4_CR6","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"4_CR7","doi-asserted-by":"crossref","unstructured":"Jiang, H., Moore, A.W., Ge, Z., Jin, S., Wang, J.: Lightweight application classification for network management. In: Proceedings of the 2007 SIGCOMM workshop on Internet network management - INM 07 (2007)","DOI":"10.1145\/1321753.1321771"},{"issue":"5","key":"4_CR8","doi-asserted-by":"publisher","first-page":"575","DOI":"10.1016\/j.comcom.2012.12.002","volume":"36","author":"Y Kanda","year":"2013","unstructured":"Kanda, Y., Fontugne, R., Fukuda, K., Sugawara, T.: ADMIRE: anomaly detection method using entropy-based PCA with three-step sketches. Comput. Commun. 36(5), 575\u2013588 (2013)","journal-title":"Comput. Commun."},{"key":"4_CR9","doi-asserted-by":"crossref","unstructured":"Liu, X., Tang, Z., Yang, B.: Predicting network attacks with CNN by constructing images from netflow data. In: 2019 IEEE 5th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS) (2019)","DOI":"10.1109\/BigDataSecurity-HPSC-IDS.2019.00022"},{"key":"4_CR10","first-page":"1","volume":"14","author":"W Mckinney","year":"2011","unstructured":"Mckinney, W.: Pandas: a foundational python library for data analysis and statistics. Python High Perform. Sci. Comput. 14, 1\u20139 (2011)","journal-title":"Python High Perform. Sci. Comput."},{"key":"4_CR11","unstructured":"Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library (2019)"},{"issue":"1","key":"4_CR12","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1109\/TETCI.2017.2772792","volume":"2","author":"N Shone","year":"2018","unstructured":"Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 41\u201350 (2018)","journal-title":"IEEE Trans. Emerg. Top. Comput. Intell."},{"key":"4_CR13","doi-asserted-by":"crossref","unstructured":"Tran, Q.A., Jiang, F., Ha, Q.M.: Evolving block-based neural network and field programmable gate arrays for host-based intrusion detection system. In: 2012 Fourth International Conference on Knowledge and Systems Engineering (2012)","DOI":"10.1109\/KSE.2012.31"},{"key":"4_CR14","doi-asserted-by":"crossref","unstructured":"Tran, Q.A., Jiang, F., Hu, J.: A real-time netflow-based intrusion detection system with improved bbnn and high-frequency field programmable gate arrays. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (2012)","DOI":"10.1109\/TrustCom.2012.51"},{"key":"4_CR15","doi-asserted-by":"crossref","unstructured":"Winter, P., Hermann, E., Zeilinger, M.: Inductive intrusion detection in flow-based network data using one-class support vector machines. In: 2011 4th IFIP International Conference on New Technologies, Mobility and Security (2011)","DOI":"10.1109\/NTMS.2011.5720582"},{"key":"4_CR16","doi-asserted-by":"crossref","unstructured":"Zhenqi, W., Xinyu, W.: Netflow based intrusion detection system. In: 2008 International Conference on MultiMedia and Information Technology (2008)","DOI":"10.1109\/MMIT.2008.213"}],"container-title":["Advances in Intelligent Systems and Computing","14th International Conference on Computational Intelligence in Security for Information Systems and 12th International Conference on European Transnational Educational (CISIS 2021 and ICEUTE 2021)"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87872-6_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,22]],"date-time":"2022-01-22T07:03:36Z","timestamp":1642835016000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87872-6_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,22]]},"ISBN":["9783030878719","9783030878726"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87872-6_4","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2021,9,22]]},"assertion":[{"value":"22 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CISIS - ICEUTE","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Computational Intelligence in Security for Information Systems Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bilbao","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cisis-spain2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2021.iceuteconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}