{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:26:44Z","timestamp":1732040804743},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030878719"},{"type":"electronic","value":"9783030878726"}],"license":[{"start":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T00:00:00Z","timestamp":1632268800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T00:00:00Z","timestamp":1632268800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T00:00:00Z","timestamp":1632268800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T00:00:00Z","timestamp":1632268800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-87872-6_22","type":"book-chapter","created":{"date-parts":[[2021,9,21]],"date-time":"2021-09-21T04:02:39Z","timestamp":1632196959000},"page":"224-233","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A Comparative Study of the Most Important Methods for Forecasting the ICT Systems Vulnerabilities"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9740-5394","authenticated-orcid":false,"given":"O.","family":"Cosma","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3135-1244","authenticated-orcid":false,"given":"M.","family":"Macelaru","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0626-9284","authenticated-orcid":false,"given":"P. C.","family":"Pop","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5648-7191","authenticated-orcid":false,"given":"C.","family":"Sabo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8855-7350","authenticated-orcid":false,"given":"I.","family":"Zelina","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,22]]},"reference":[{"key":"22_CR1","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1007\/BF02478259","volume":"5","author":"WS McCulloch","year":"1943","unstructured":"McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115\u2013133 (1943)","journal-title":"Bull. Math. Biophys."},{"key":"22_CR2","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1038\/323533a0","volume":"323","author":"D Rumelhart","year":"1986","unstructured":"Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323, 533\u2013536 (1986)","journal-title":"Nature"},{"key":"22_CR3","volume-title":"Machine Learning and Deep Learning Using Python and Tensor Flow","author":"VR Konasani","year":"2021","unstructured":"Konasani, V.R., Kadre, S.: Machine Learning and Deep Learning Using Python and Tensor Flow. McGraw Hill, New York (2021)"},{"key":"22_CR4","first-page":"362","volume":"8","author":"NR Pokhrel","year":"2017","unstructured":"Pokhrel, N.R., Rodrigo, H., Tsokos, C.P.: Cybersecurity: time series predictive modeling of vulnerabilities of desktop operating system using linear and non-linear approach. J. Inf. Secur. 8, 362\u2013382 (2017)","journal-title":"J. Inf. Secur."},{"key":"22_CR5","doi-asserted-by":"publisher","first-page":"101596","DOI":"10.1016\/j.cose.2019.101596","volume":"87","author":"Y Movahedi","year":"2019","unstructured":"Movahedi, Y., Cukier, M., Gashi, I.: Vulnerability prediction capability: A comparison between vulnerability discovery models and neural network models. Comput. Secur. 87, 101596 (2019)","journal-title":"Comput. Secur."},{"key":"22_CR6","doi-asserted-by":"publisher","first-page":"101610","DOI":"10.1016\/j.cose.2019.101610","volume":"88","author":"E Yasasin","year":"2020","unstructured":"Yasasin, E., Prester, J., Wagner, G., Schryen, G.: Forecasting IT security vulnerabilities \u2013an empirical analysis. Comput. Secur. 88, 101610 (2020)","journal-title":"Comput. Secur."},{"key":"22_CR7","doi-asserted-by":"publisher","first-page":"1014","DOI":"10.1016\/j.eswa.2012.08.012","volume":"40","author":"C Bennett","year":"2013","unstructured":"Bennett, C., Stewart, R.A., Beal, C.D.: ANN-based residential water end-use demand forecasting model. Expert Syst. Appl. 40, 1014\u20131023 (2013)","journal-title":"Expert Syst. Appl."},{"key":"22_CR8","doi-asserted-by":"publisher","first-page":"611","DOI":"10.1016\/j.eswa.2011.07.051","volume":"39","author":"P-C Chang","year":"2012","unstructured":"Chang, P.-C., Wang, D., Zhou, C.: A novel model by evolving partially connected neural for stock price trend forecasting. Expert Syst. App. 39, 611\u2013620 (2012)","journal-title":"Expert Syst. App."},{"key":"22_CR9","first-page":"1026","volume":"185","author":"J-R Zhang","year":"2007","unstructured":"Zhang, J.-R., Zhang, J., Lok, T.-M., Lyu, M.R.: A hybrid particle swarm optimization\u2013back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 185, 1026\u20131037 (2007)","journal-title":"Appl. Math. Comput."},{"key":"22_CR10","doi-asserted-by":"publisher","first-page":"855","DOI":"10.1016\/j.eswa.2014.08.018","volume":"42","author":"L Wang","year":"2015","unstructured":"Wang, L., Zeng, Y., Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42, 855\u2013863 (2015)","journal-title":"Expert Syst. Appl."},{"key":"22_CR11","unstructured":"National Vulnerability Database. https:\/\/nvd.nist.gov\/. Accessed 24 Apr 2021"},{"key":"22_CR12","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1016\/j.cose.2015.03.003","volume":"51","author":"Y Roumani","year":"2015","unstructured":"Roumani, Y., Nwankpa, J.K., Roumani, Y.F.: Time series modeling of vulnerabilities. Comput. Secur. 51, 32\u201340 (2015)","journal-title":"Comput. Secur."},{"key":"22_CR13","volume-title":"Forecasting: Principles & Practice","author":"R Hyndman","year":"2021","unstructured":"Hyndman, R., Athanosoupulos, G.: Forecasting: Principles & Practice, 2nd edn. OTexts, Melbourne, Australia (2021)","edition":"2"},{"key":"22_CR14","volume-title":"Statistical Forecasting for Inventory Control","author":"RG Brown","year":"1959","unstructured":"Brown, R.G.: Statistical Forecasting for Inventory Control. McGraw\/Hill, New York (1959)"},{"key":"22_CR15","volume-title":"Forecasting Seasonal and Trends by Exponentially Weighted Averages (O.N.R. Memorandum No. 52)","author":"CE Holt","year":"1957","unstructured":"Holt, C.E.: Forecasting Seasonal and Trends by Exponentially Weighted Averages (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh (1957)"},{"issue":"3","key":"22_CR16","doi-asserted-by":"publisher","first-page":"324","DOI":"10.1287\/mnsc.6.3.324","volume":"6","author":"PR Winters","year":"1960","unstructured":"Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manage. Sci. 6(3), 324\u2013342 (1960)","journal-title":"Manage. Sci."},{"key":"22_CR17","first-page":"1","volume":"2020","author":"W Lu","year":"2020","unstructured":"Lu, W., Li, J., Li, Y., Sun, A., Wang, J.: A CNN-LSTM-based model to forecast stock prices. Complexity 2020, 1\u201310 (2020)","journal-title":"Complexity"},{"issue":"3","key":"22_CR18","doi-asserted-by":"publisher","first-page":"1671","DOI":"10.5194\/hess-25-1671-2021","volume":"25","author":"A Wunsch","year":"2021","unstructured":"Wunsch, A., Liesch, T., Broda, S.: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX). Hydrol. Earth Syst. Sci. 25(3), 1671\u20131687 (2021)","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"22_CR19","doi-asserted-by":"publisher","first-page":"119813","DOI":"10.1016\/j.energy.2021.119813","volume":"221","author":"R Shipman","year":"2021","unstructured":"Shipman, R., et al.: We got the power: Predicting available capacity for vehicle-to-grid services using a deep recurrent neural network. Energy 221, 119813 (2021)","journal-title":"Energy"},{"issue":"3","key":"22_CR20","doi-asserted-by":"publisher","first-page":"1658","DOI":"10.1109\/TII.2020.2991796","volume":"17","author":"M Ma","year":"2021","unstructured":"Ma, M., Mao, Z.: Deep-convolution-based LSTM network for remaining useful life prediction. IEEE Trans. Industr. Inf. 17(3), 1658\u20131667 (2021)","journal-title":"IEEE Trans. Industr. Inf."},{"key":"22_CR21","doi-asserted-by":"publisher","first-page":"67","DOI":"10.3390\/fi13030067","volume":"13","author":"E Hitimana","year":"2021","unstructured":"Hitimana, E., Bajpai, G., Musabe, R., Sibomana, L., Kayalvizhi, J.: Implementation of IoT framework with data analysis using deep learning methods for occupancy prediction in a building. Future Internet 13, 67 (2021)","journal-title":"Future Internet"},{"issue":"1","key":"22_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40537-021-00430-0","volume":"8","author":"W Budiharto","year":"2021","unstructured":"Budiharto, W.: Data science approach to stock prices forecasting in Indonesia during Covid-19 using Long Short-Term Memory (LSTM). J. Big Data 8(1), 1\u20139 (2021). https:\/\/doi.org\/10.1186\/s40537-021-00430-0","journal-title":"J. Big Data"},{"key":"22_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1049\/cit2.12002","volume":"6","author":"R Kaushik","year":"2021","unstructured":"Kaushik, R., Jain, S., Jain, S., Dash, T.: Performance evaluation of deep neural networks for forecasting time-series with multiple structural breaks and high volatility. CAAI Trans. Intell. Technol. 6, 1\u201316 (2021)","journal-title":"CAAI Trans. Intell. Technol."},{"key":"22_CR24","doi-asserted-by":"publisher","first-page":"110591","DOI":"10.1016\/j.rser.2020.110591","volume":"137","author":"N Somu","year":"2021","unstructured":"Somu, N., Raman, G.M.R., Ramamritham, K.: A deep learning framework for building energy consumption forecast. Renew. Sustain. Energy. Rev. 137, 110591 (2021)","journal-title":"Renew. Sustain. Energy. Rev."},{"issue":"3","key":"22_CR25","doi-asserted-by":"publisher","first-page":"2130001","DOI":"10.1142\/S0129065721300011","volume":"31","author":"P Lara-Benitezy","year":"2021","unstructured":"Lara-Benitezy, P., Carranza-Garcia, M., Riquelme, J.C.: An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 31(3), 2130001 (2021)","journal-title":"Int. J. Neural Syst."},{"key":"22_CR26","doi-asserted-by":"publisher","first-page":"287","DOI":"10.3390\/electronics10030287","volume":"10","author":"E Ioannis","year":"2021","unstructured":"Ioannis, E., Kiriakidou, N., Stavroyiannis, S., Pintelas, P.: An advanced CNN-LSTM model for cryptocurrency forecasting. Electronics 10, 287 ( 2021)","journal-title":"Electronics"},{"key":"22_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1592434.1592438","volume":"21","author":"R Jhala","year":"2009","unstructured":"Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 21, 1\u201357 (2009)","journal-title":"ACM Comput. Surv."}],"container-title":["Advances in Intelligent Systems and Computing","14th International Conference on Computational Intelligence in Security for Information Systems and 12th International Conference on European Transnational Educational (CISIS 2021 and ICEUTE 2021)"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87872-6_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,22]],"date-time":"2022-01-22T07:05:58Z","timestamp":1642835158000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87872-6_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,22]]},"ISBN":["9783030878719","9783030878726"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87872-6_22","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2021,9,22]]},"assertion":[{"value":"22 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CISIS - ICEUTE","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Computational Intelligence in Security for Information Systems Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bilbao","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cisis-spain2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2021.iceuteconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}