{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:11:30Z","timestamp":1726135890270},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030878689"},{"type":"electronic","value":"9783030878696"}],"license":[{"start":{"date-parts":[[2021,9,23]],"date-time":"2021-09-23T00:00:00Z","timestamp":1632355200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,9,23]],"date-time":"2021-09-23T00:00:00Z","timestamp":1632355200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-87869-6_13","type":"book-chapter","created":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T07:10:31Z","timestamp":1632294631000},"page":"135-144","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Time Series Forecasting of Gold Prices with the Help of Its Decomposition and Multivariate Adaptive Regression Splines"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7052-2811","authenticated-orcid":false,"given":"Fernando S\u00e1nchez","family":"Lasheras","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8880-6348","authenticated-orcid":false,"given":"Paulino Jos\u00e9 Garc\u00eda","family":"Nieto","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3194-4448","authenticated-orcid":false,"given":"Esperanza","family":"Garc\u00eda-Gonzalo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7106-5747","authenticated-orcid":false,"given":"Gregorio Fidalgo","family":"Valverde","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6279-3275","authenticated-orcid":false,"given":"Alicja","family":"Krzemie\u0144","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,23]]},"reference":[{"key":"13_CR1","unstructured":"World Bank. Gold (UK), 99.5% fine, London afternoon fixing, average of daily rates. Bloomberg; Kitco.com; International Monetary Fund, International Financial Statistics; London Bullion Market; Metals Week; Platts Metals Week; Shearson Lehman Brothers, Metal Market Weekly Review; Thomson Reuters Datastream; World Bank (2021). https:\/\/thedocs.worldbank.org\/en\/doc\/5d903e848db1d1b83e0ec8f744e55570-0350012021\/related\/CMO-Historical-Data-Monthly.xlsx. Accessed 26 April 2021"},{"key":"13_CR2","doi-asserted-by":"publisher","DOI":"10.2139\/ssrn.3437640","author":"A Buccioli","year":"2019","unstructured":"Buccioli, A., Kokholm, T.: Shock waves and golden shores: the asymmetric interaction between gold prices and the stock market. SSRN J. (2019). https:\/\/doi.org\/10.2139\/ssrn.3437640","journal-title":"SSRN J."},{"key":"13_CR3","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1016\/j.resourpol.2016.06.001","volume":"49","author":"A Jain","year":"2016","unstructured":"Jain, A., Biswal, P.C.: Dynamic linkages among oil price, gold price, exchange rate, and stock market in India. Resour. Policy 49, 179\u2013185 (2016). https:\/\/doi.org\/10.1016\/j.resourpol.2016.06.001","journal-title":"Resour. Policy"},{"key":"13_CR4","doi-asserted-by":"publisher","first-page":"787","DOI":"10.1016\/j.eneco.2018.07.007","volume":"74","author":"R Selmi","year":"2018","unstructured":"Selmi, R., Mensi, W., Hammoudeh, S., Bouoiyour, J.: Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold. . Energy Econ. 74, 787\u2013801 (2018). https:\/\/doi.org\/10.1016\/j.eneco.2018.07.007","journal-title":". Energy Econ."},{"key":"13_CR5","doi-asserted-by":"publisher","unstructured":"Wang, X., Ma, Y., Li, W.: The prediction of gold futures prices at the Shanghai futures exchange based on the MEEMD-CS-Elman model. SAGE Open. 11 (2021). https:\/\/doi.org\/10.1177\/21582440211001866","DOI":"10.1177\/21582440211001866"},{"key":"13_CR6","doi-asserted-by":"publisher","unstructured":"Zhang, P., Ci, B.: Deep belief network for gold price forecasting. Resour. Policy. 69, 101806 (2020). https:\/\/doi.org\/10.1016\/j.resourpol.2020.101806","DOI":"10.1016\/j.resourpol.2020.101806"},{"key":"13_CR7","doi-asserted-by":"publisher","first-page":"250","DOI":"10.1016\/j.resourpol.2019.02.014","volume":"61","author":"Z Alameer","year":"2019","unstructured":"Alameer, Z., Elaziz, M.A., Ewees, A.A., Ye, H., Jianhua, Z.: Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm. Resour. Policy 61, 250\u2013260 (2019). https:\/\/doi.org\/10.1016\/j.resourpol.2019.02.014","journal-title":"Resour. Policy"},{"key":"13_CR8","doi-asserted-by":"publisher","first-page":"7245","DOI":"10.1016\/j.eswa.2015.04.058","volume":"42","author":"W Kristjanpoller","year":"2015","unstructured":"Kristjanpoller, W., Minutolo, M.C.: Gold price volatility: a forecasting approach using the artificial neural network\u2013GARCH model. Expert Syst. Appl. 42, 7245\u20137251 (2015). https:\/\/doi.org\/10.1016\/j.eswa.2015.04.058","journal-title":"Expert Syst. Appl."},{"key":"13_CR9","doi-asserted-by":"publisher","first-page":"477","DOI":"10.1016\/j.mulfin.2007.12.002","volume":"18","author":"A Parisi","year":"2008","unstructured":"Parisi, A., Parisi, F., D\u00edaz, D.: Forecasting gold price changes: rolling and recursive neural network models. J. Multinatl. Financ. Manag. 18, 477\u2013487 (2008). https:\/\/doi.org\/10.1016\/j.mulfin.2007.12.002","journal-title":"J. Multinatl. Financ. Manag."},{"key":"13_CR10","doi-asserted-by":"publisher","unstructured":"Jianwei, E., Ye, J., Jin, H.: A novel hybrid model on the prediction of time series and its application for the gold price analysis and forecasting. Phys. A: Stat. Mech. Appl. 527, 121454 (2019). https:\/\/doi.org\/10.1016\/j.physa.2019.121454.","DOI":"10.1016\/j.physa.2019.121454"},{"key":"13_CR11","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1016\/j.physa.2015.07.021","volume":"438","author":"MM Rounaghi","year":"2015","unstructured":"Rounaghi, M.M., Abbaszadeh, M.R., Arashi, M.: Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique. Phys. A: Stat. Mech. Appl. 438, 625\u2013633 (2015). https:\/\/doi.org\/10.1016\/j.physa.2015.07.021","journal-title":"Phys. A: Stat. Mech. Appl."},{"key":"13_CR12","doi-asserted-by":"publisher","unstructured":"Wynn, H.P.: The Advanced Theory of Statistics, vol. 3, 4th edn. Kendall, S.M., Stuart, A., Ord, J.K.: High Wycombe: Charles Griffin, 1983. Price: \u00a337.50. Pages: 780. J. Forecast. 4, 315\u2013315 (1985). https:\/\/doi.org\/10.1002\/for.3980040310.","DOI":"10.1002\/for.3980040310"},{"key":"13_CR13","unstructured":"R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2020)"},{"key":"13_CR14","doi-asserted-by":"publisher","unstructured":"Friedman, J.H.: Multivariate adaptive regression splines. Ann. Statist. 19 (1991). https:\/\/doi.org\/10.1214\/aos\/1176347963","DOI":"10.1214\/aos\/1176347963"},{"issue":"3","key":"13_CR15","first-page":"351","volume":"10","author":"J De Andr\u00e9s","year":"2011","unstructured":"De Andr\u00e9s, J., S\u00e1nchez-Lasheras, F., Lorca, P., de Cos Juez, F.J.: A hybrid device of self organizing maps (SOM) and multivariate adaptive regression splines (MARS) for the forecasting of firms\u2019 bankruptcy. J. Account. Manag. Inf. Syst. 10(3), 351\u2013374 (2011)","journal-title":"J. Account. Manag. Inf. Syst."},{"key":"13_CR16","doi-asserted-by":"publisher","first-page":"88","DOI":"10.1016\/j.scitotenv.2012.04.068","volume":"430","author":"PJ Garc\u00eda Nieto","year":"2012","unstructured":"Garc\u00eda Nieto, P.J., Alonso Fern\u00e1ndez, J.R., S\u00e1nchez Lasheras, F., de Cos Juez, F.J., D\u00edaz Mu\u00f1iz, C.: A new improved study of cyanotoxins presence from experimental cyanobacteria concentrations in the Trasona reservoir (Northern Spain) using the MARS technique. Sci. Total Environ. 430, 88\u201392 (2012). https:\/\/doi.org\/10.1016\/j.scitotenv.2012.04.068","journal-title":"Sci. Total Environ."},{"key":"13_CR17","doi-asserted-by":"publisher","first-page":"7062","DOI":"10.3390\/s150307062","volume":"15","author":"F Lasheras","year":"2015","unstructured":"Lasheras, F., Nieto, P., de Cos Juez, F., Bay\u00f3n, R., Su\u00e1rez, V.: A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful Life for aircraft engines. Sensors 15, 7062\u20137083 (2015). https:\/\/doi.org\/10.3390\/s150307062","journal-title":"Sensors"},{"key":"13_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2016\/1850401","volume":"2016","author":"E P\u00e9rez-Pevida","year":"2016","unstructured":"P\u00e9rez-Pevida, E., et al.: Biomechanical consequences of the elastic properties of dental implant alloys on the supporting bone: finite element analysis. Biomed. Res. Int. 2016, 1\u20139 (2016). https:\/\/doi.org\/10.1155\/2016\/1850401","journal-title":"Biomed. Res. Int."},{"key":"13_CR19","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1016\/j.jsm.2016.04.002","volume":"14","author":"A Krzemie\u0144","year":"2015","unstructured":"Krzemie\u0144, A., Riesgo Fern\u00e1ndez, P., Su\u00e1rez S\u00e1nchez, A., S\u00e1nchez Lasheras, F.: Forecasting European thermal coal spot prices. J. Sustain. Min. 14, 203\u2013210 (2015). https:\/\/doi.org\/10.1016\/j.jsm.2016.04.002","journal-title":"J. Sustain. Min."}],"container-title":["Advances in Intelligent Systems and Computing","16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021)"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87869-6_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T07:12:36Z","timestamp":1632294756000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87869-6_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,23]]},"ISBN":["9783030878689","9783030878696"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87869-6_13","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2021,9,23]]},"assertion":[{"value":"23 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SOCO","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Soft Computing Models in Industrial and Environmental Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bilbao","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"socomoin2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2021.sococonference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}