{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:27:35Z","timestamp":1726136855978},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030876012"},{"type":"electronic","value":"9783030876029"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87602-9_17","type":"book-chapter","created":{"date-parts":[[2021,9,27]],"date-time":"2021-09-27T18:13:23Z","timestamp":1632766403000},"page":"181-191","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Multi-scale Capsule Network for\u00a0Improving Diagnostic Generalizability in\u00a0Breast Cancer Diagnosis Using Ultrasonography"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7743-040X","authenticated-orcid":false,"given":"Chanho","family":"Kim","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7137-9968","authenticated-orcid":false,"given":"Won Hwa","family":"Kim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0263-0941","authenticated-orcid":false,"given":"Hye Jung","family":"Kim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9799-1773","authenticated-orcid":false,"given":"Jaeil","family":"Kim","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,25]]},"reference":[{"issue":"9","key":"17_CR1","doi-asserted-by":"publisher","first-page":"997","DOI":"10.1109\/TBME.2002.1028423","volume":"49","author":"KZ Abd-Elmoniem","year":"2002","unstructured":"Abd-Elmoniem, K.Z., Youssef, A.B., Kadah, Y.M.: Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans. Biomed. Eng. 49(9), 997\u20131014 (2002)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"17_CR2","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"issue":"2","key":"17_CR3","doi-asserted-by":"publisher","first-page":"392","DOI":"10.1148\/radiol.2482071778","volume":"248","author":"K Drukker","year":"2008","unstructured":"Drukker, K., Gruszauskas, N.P., Sennett, C.A., Giger, M.L.: Breast us computer-aided diagnosis workstation: performance with a large clinical diagnostic population. Radiology 248(2), 392\u2013397 (2008)","journal-title":"Radiology"},{"key":"17_CR4","doi-asserted-by":"crossref","unstructured":"Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414\u20132423 (2016)","DOI":"10.1109\/CVPR.2016.265"},{"key":"17_CR5","unstructured":"Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)"},{"issue":"19","key":"17_CR6","doi-asserted-by":"publisher","first-page":"7714","DOI":"10.1088\/1361-6560\/aa82ec","volume":"62","author":"S Han","year":"2017","unstructured":"Han, S., et al.: A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys. Med. Biol. 62(19), 7714 (2017)","journal-title":"Phys. Med. Biol."},{"key":"17_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1007\/978-3-642-21735-7_6","volume-title":"Artificial Neural Networks and Machine Learning \u2013 ICANN 2011","author":"GE Hinton","year":"2011","unstructured":"Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 44\u201351. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-21735-7_6"},{"key":"17_CR8","doi-asserted-by":"crossref","unstructured":"Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501\u20131510 (2017)","DOI":"10.1109\/ICCV.2017.167"},{"key":"17_CR9","doi-asserted-by":"crossref","unstructured":"Kim, C., Kim, W.H., Kim, H.J., Kim, J.: Weakly-supervised us breast tumor characterization and localization with a box convolution network. In: Medical Imaging 2020: Computer-Aided Diagnosis. vol. 11314, p. 1131419. International Society for Optics and Photonics (2020)","DOI":"10.1117\/12.2549203"},{"key":"17_CR10","unstructured":"Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"issue":"5","key":"17_CR11","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1109\/6.920031","volume":"38","author":"SK Moore","year":"2001","unstructured":"Moore, S.K.: Better breast cancer detection. IEEE Spectr. 38(5), 50\u201354 (2001)","journal-title":"IEEE Spectr."},{"key":"17_CR12","unstructured":"Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. arXiv preprint arXiv:1710.09829 (2017)"},{"issue":"3","key":"17_CR13","doi-asserted-by":"publisher","first-page":"762","DOI":"10.1109\/TMI.2018.2872031","volume":"38","author":"SY Shin","year":"2018","unstructured":"Shin, S.Y., Lee, S., Yun, I.D., Kim, S.M., Lee, K.M.: Joint weakly and semi-supervised deep learning for localization and classification of masses in breast ultrasound images. IEEE Trans. Med. Imaging 38(3), 762\u2013774 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"17_CR14","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1148\/radiology.196.1.7784555","volume":"196","author":"AT Stavros","year":"1995","unstructured":"Stavros, A.T., Thickman, D., Rapp, C.L., Dennis, M.A., Parker, S.H., Sisney, G.A.: Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 196(1), 123\u2013134 (1995)","journal-title":"Radiology"},{"key":"17_CR15","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20139 (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"17_CR16","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818\u20132826 (2016)","DOI":"10.1109\/CVPR.2016.308"},{"issue":"7","key":"17_CR17","doi-asserted-by":"publisher","first-page":"1572","DOI":"10.3390\/s17071572","volume":"17","author":"L Wang","year":"2017","unstructured":"Wang, L.: Early diagnosis of breast cancer. Sensors 17(7), 1572 (2017)","journal-title":"Sensors"},{"issue":"2","key":"17_CR18","doi-asserted-by":"publisher","first-page":"513","DOI":"10.1007\/s11075-017-0386-x","volume":"78","author":"S Wang","year":"2018","unstructured":"Wang, S., Huang, T.Z., Zhao, X.L., Mei, J.J., Huang, J.: Speckle noise removal in ultrasound images by first-and second-order total variation. Numer. Algorithms 78(2), 513\u2013533 (2018)","journal-title":"Numer. Algorithms"},{"issue":"3","key":"17_CR19","doi-asserted-by":"publisher","first-page":"682","DOI":"10.1016\/j.ejrad.2008.11.007","volume":"73","author":"MH Yap","year":"2010","unstructured":"Yap, M.H., Edirisinghe, E., Bez, H.: Processed images in human perception: a case study in ultrasound breast imaging. Eur. J. Radiol. 73(3), 682\u2013687 (2010)","journal-title":"Eur. J. Radiol."}],"container-title":["Lecture Notes in Computer Science","Predictive Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87602-9_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,27]],"date-time":"2021-09-27T18:19:04Z","timestamp":1632766744000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87602-9_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030876012","9783030876029"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87602-9_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"25 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRIME","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on PRedictive Intelligence In MEdicine","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"prime2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/basira-lab.com\/prime-miccai-2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"96% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The workshop was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}