{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:27:27Z","timestamp":1726136847029},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030876012"},{"type":"electronic","value":"9783030876029"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87602-9_14","type":"book-chapter","created":{"date-parts":[[2021,9,27]],"date-time":"2021-09-27T14:13:23Z","timestamp":1632752003000},"page":"147-156","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":19,"title":["Multi-task Deep Segmentation and\u00a0Radiomics for Automatic Prognosis in\u00a0Head and Neck Cancer"],"prefix":"10.1007","author":[{"given":"Vincent","family":"Andrearczyk","sequence":"first","affiliation":[]},{"given":"Pierre","family":"Fontaine","sequence":"additional","affiliation":[]},{"given":"Valentin","family":"Oreiller","sequence":"additional","affiliation":[]},{"given":"Joel","family":"Castelli","sequence":"additional","affiliation":[]},{"given":"Mario","family":"Jreige","sequence":"additional","affiliation":[]},{"given":"John O.","family":"Prior","sequence":"additional","affiliation":[]},{"given":"Adrien","family":"Depeursinge","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,25]]},"reference":[{"issue":"2","key":"14_CR1","doi-asserted-by":"publisher","first-page":"563","DOI":"10.1148\/radiol.2015151169","volume":"278","author":"RJ Gillies","year":"2016","unstructured":"Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563\u2013577 (2016)","journal-title":"Radiology"},{"key":"14_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"issue":"10","key":"14_CR3","doi-asserted-by":"publisher","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","volume":"34","author":"BH Menze","year":"2014","unstructured":"Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993\u20132024 (2014)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"14_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-030-67194-5_1","volume-title":"Head and Neck Tumor Segmentation","author":"V Andrearczyk","year":"2021","unstructured":"Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2020: automatic head and neck tumor segmentation in PET\/CT. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 1\u201321. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-67194-5_1"},{"issue":"1","key":"14_CR5","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1002\/sim.4780140108","volume":"14","author":"D Faraggi","year":"1995","unstructured":"Faraggi, D., Simon, R.: A neural network model for survival data. Stat. Med. 14(1), 73\u201382 (1995)","journal-title":"Stat. Med."},{"key":"14_CR6","unstructured":"Ranganath, R., Perotte, A., Elhadad, N., Blei, D.: Deep survival analysis. In: Machine Learning for Healthcare Conference, pp. 101\u2013114. PMLR (2016)"},{"issue":"1","key":"14_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12874-018-0482-1","volume":"18","author":"JL Katzman","year":"2018","unstructured":"Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 1\u201312 (2018)","journal-title":"BMC Med. Res. Methodol."},{"issue":"17","key":"14_CR8","doi-asserted-by":"publisher","first-page":"2339","DOI":"10.1002\/sim.8542","volume":"39","author":"JA Steingrimsson","year":"2020","unstructured":"Steingrimsson, J.A., Morrison, S.: Deep learning for survival outcomes. Stat. Med. 39(17), 2339\u20132349 (2020)","journal-title":"Stat. Med."},{"key":"14_CR9","doi-asserted-by":"publisher","unstructured":"Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T.: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II, vol. 11384. Springer, Heidelberg (2019). https:\/\/doi.org\/10.1007\/978-3-030-11726-9","DOI":"10.1007\/978-3-030-11726-9"},{"issue":"1","key":"14_CR10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-018-37186-2","volume":"9","author":"S Baek","year":"2019","unstructured":"Baek, S., et al.: Deep segmentation networks predict survival of non-small cell lung cancer. Sci. Rep. 9(1), 1\u201310 (2019)","journal-title":"Sci. Rep."},{"issue":"2","key":"14_CR11","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1080\/23808993.2019.1585805","volume":"4","author":"VS Parekh","year":"2019","unstructured":"Parekh, V.S., Jacobs, M.A.: Deep learning and radiomics in precision medicine. Expert Rev. Precis. Med. Drug Dev. 4(2), 59\u201372 (2019)","journal-title":"Expert Rev. Precis. Med. Drug Dev."},{"issue":"1","key":"14_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-019-39206-1","volume":"9","author":"A Diamant","year":"2019","unstructured":"Diamant, A., Chatterjee, A., Valli\u00e8res, M., Shenouda, G., Seuntjens, J.: Deep learning in head & neck cancer outcome prediction. Sci. Rep. 9(1), 1\u201310 (2019)","journal-title":"Sci. Rep."},{"issue":"1","key":"14_CR13","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12880-019-0399-0","volume":"20","author":"Y Zhang","year":"2020","unstructured":"Zhang, Y., Lobo-Mueller, E.M., Karanicolas, P., Gallinger, S., Haider, M.A., Khalvati, F.: CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging. BMC Med. Imaging 20(1), 1\u20138 (2020)","journal-title":"BMC Med. Imaging"},{"issue":"13","key":"14_CR14","doi-asserted-by":"publisher","first-page":"E2970","DOI":"10.1073\/pnas.1717139115","volume":"115","author":"P Mobadersany","year":"2018","unstructured":"Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970\u2013E2979 (2018)","journal-title":"Proc. Natl. Acad. Sci."},{"key":"14_CR15","doi-asserted-by":"crossref","unstructured":"Li, H., et al.: Deep convolutional neural networks for imaging data based survival analysis of rectal cancer. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 846\u2013849. IEEE (2019)","DOI":"10.1109\/ISBI.2019.8759301"},{"issue":"1","key":"14_CR16","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1023\/A:1007379606734","volume":"28","author":"R Caruana","year":"1997","unstructured":"Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41\u201375 (1997)","journal-title":"Mach. Learn."},{"key":"14_CR17","unstructured":"Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? In: International Conference on Machine Learning, pp. 9120\u20139132. PMLR (2020)"},{"issue":"3","key":"14_CR18","doi-asserted-by":"publisher","first-page":"034002","DOI":"10.1117\/1.JMI.6.3.034002","volume":"6","author":"P Mlynarski","year":"2019","unstructured":"Mlynarski, P., Delingette, H., Criminisi, A., Ayache, N.: Deep learning with mixed supervision for brain tumor segmentation. J. Med. Imaging 6(3), 034002 (2019)","journal-title":"J. Med. Imaging"},{"key":"14_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1007\/978-3-030-46640-4_31","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"L Weninger","year":"2020","unstructured":"Weninger, L., Liu, Q., Merhof, D.: Multi-task learning for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 327\u2013337. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-46640-4_31"},{"key":"14_CR20","unstructured":"Multi-task deep learning based ct imaging analysis for covid-19 pneumonia: classification and segmentation"},{"key":"14_CR21","unstructured":"Graziani, M., Ot\u00e1lora, S., Muller, H., Andrearczyk, V.: Guiding CNNs towards relevant concepts by multi-task and adversarial learning. arXiv preprint arXiv:2008.01478 (2020)"},{"key":"14_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1007\/978-3-030-67194-5_4","volume-title":"Head and Neck Tumor Segmentation","author":"A Iantsen","year":"2021","unstructured":"Iantsen, A., Visvikis, D., Hatt, M.: Squeeze-and-excitation normalization for automated delineation of head and neck primary tumors in combined PET and CT images. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 37\u201343. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-67194-5_4"},{"issue":"21","key":"14_CR23","doi-asserted-by":"publisher","first-page":"e104","DOI":"10.1158\/0008-5472.CAN-17-0339","volume":"77","author":"JJM Van Griethuysen","year":"2017","unstructured":"Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104\u2013e107 (2017)","journal-title":"Cancer Res."},{"issue":"1","key":"14_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40644-020-00329-8","volume":"20","author":"Y Suter","year":"2020","unstructured":"Suter, Y., et al.: Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging 20(1), 1\u201313 (2020)","journal-title":"Cancer Imaging"},{"issue":"12","key":"14_CR25","doi-asserted-by":"publisher","first-page":"749","DOI":"10.1038\/nrclinonc.2017.141","volume":"14","author":"P Lambin","year":"2017","unstructured":"Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749\u2013762 (2017)","journal-title":"Nat. Rev. Clin. Oncol."},{"issue":"2","key":"14_CR26","first-page":"187","volume":"34","author":"CR David","year":"1972","unstructured":"David, C.R., et al.: Regression models and life tables (with discussion). J. Roy. Stat. Soc. 34(2), 187\u2013220 (1972)","journal-title":"J. Roy. Stat. Soc."},{"key":"14_CR27","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1002\/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4","volume":"15","author":"FE Harrell","year":"1996","unstructured":"Harrell, F.E., Lee, K.L., Mark, D.B.: Tutorial in biostatistics multivariable prognostic models. Stat. Med. 15, 361\u2013387 (1996)","journal-title":"Stat. Med."},{"key":"14_CR28","unstructured":"Andrearczyk, V., Oreiller, V., Depeursinge, A.: Oropharynx detection in PET-CT for tumor segmentation. In: Irish Machine Vision and Image Processing (2020)"},{"issue":"1","key":"14_CR29","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-017-10371-5","volume":"7","author":"M Vallieres","year":"2017","unstructured":"Vallieres, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), 1\u201314 (2017)","journal-title":"Sci. Rep."},{"key":"14_CR30","doi-asserted-by":"crossref","unstructured":"Chennupati, S., Sistu, G., Yogamani, S., Rawashdeh, S.A.: MultiNet++: multi-stream feature aggregation and geometric loss strategy for multi-task learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)","DOI":"10.1109\/CVPRW.2019.00159"},{"key":"14_CR31","unstructured":"Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482\u20137491 (2018)"},{"issue":"3","key":"14_CR32","first-page":"024008","volume":"6","author":"V Andrearczyk","year":"2019","unstructured":"Andrearczyk, V., Depeursinge, A., M\u00fcller, H.: Neural network training for cross-protocol radiomic feature standardization in computed tomography. J. Med. Imaging 6(3), 024008 (2019)","journal-title":"J. Med. Imaging"}],"container-title":["Lecture Notes in Computer Science","Predictive Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87602-9_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T04:02:49Z","timestamp":1673323369000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87602-9_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030876012","9783030876029"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87602-9_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"25 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRIME","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on PRedictive Intelligence In MEdicine","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"prime2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/basira-lab.com\/prime-miccai-2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"96% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The workshop was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}