{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:14:55Z","timestamp":1726136095553},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030875824"},{"type":"electronic","value":"9783030875831"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87583-1_4","type":"book-chapter","created":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T11:37:12Z","timestamp":1632310632000},"page":"35-44","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Automatic Tomographic Ultrasound Imaging Sequence Extraction of the Anal Sphincter"],"prefix":"10.1007","author":[{"given":"Helena","family":"Williams","sequence":"first","affiliation":[]},{"given":"Laura","family":"Cattani","sequence":"additional","affiliation":[]},{"given":"Tom","family":"Vercauteren","sequence":"additional","affiliation":[]},{"given":"Jan","family":"Deprest","sequence":"additional","affiliation":[]},{"given":"Jan","family":"D\u2019hooge","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,21]]},"reference":[{"key":"4_CR1","doi-asserted-by":"crossref","unstructured":"Bonmati, E., et al.: Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalising neural network. J. Med. Imaging 5, 12 (2017)","DOI":"10.1117\/1.JMI.5.2.021206"},{"key":"4_CR2","doi-asserted-by":"publisher","unstructured":"Cattani, L., et al.: Exo-anal imaging of the anal sphincter: a comparison between introital and transperineal image acquisition. Int. Urogynecol. J. 31(6), 1107\u20131113 (2019). https:\/\/doi.org\/10.1007\/s00192-019-04122-5","DOI":"10.1007\/s00192-019-04122-5"},{"key":"4_CR3","doi-asserted-by":"crossref","unstructured":"Dietz, H.P.: Exoanal imaging of the anal sphincters. J. Ultrasound Med. 37(1), 263\u2013280 (2018)","DOI":"10.1002\/jum.14246"},{"key":"4_CR4","unstructured":"Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. CoRR, abs\/1709.03485 (2017)"},{"key":"4_CR5","doi-asserted-by":"crossref","unstructured":"Li, X., Hong, Y., Kong, D., Zhang, X.: Automatic segmentation of levator hiatus from ultrasound images using U-Net with dense connections. Phys. Med. Biol. 64(7), 075015 (2019)","DOI":"10.1088\/1361-6560\/ab0ef4"},{"key":"4_CR6","doi-asserted-by":"crossref","unstructured":"Martinez Franco, E., et al.: Transperineal anal sphincter complex evaluation after obstetric anal sphincter injuries: with or without tomographic ultrasound imaging technique? Eur. J. Obstetr. Gynecol. Reprod. Biol. 257, 70\u201375 (2021)","DOI":"10.1016\/j.ejogrb.2020.12.009"},{"key":"4_CR7","doi-asserted-by":"publisher","unstructured":"Shek, K.L., Zazzera, V.D., Atan, I.K., Rojas, R.G., Langer, S., Dietz, H.P.: The evolution of transperineal ultrasound findings of the external anal sphincter during the first years after childbirth. Int. Urogynecol. J. 27(12), 1899\u20131903 (2016). https:\/\/doi.org\/10.1007\/s00192-016-3055-z","DOI":"10.1007\/s00192-016-3055-z"},{"key":"4_CR8","doi-asserted-by":"crossref","unstructured":"Sheth, S.: AIUM\/IUGA practice parameter for the performance of urogynecological ultrasound examinations: developed in collaboration with the ACR, the AUGS, the AUA, and the SRU. J. Ultrasound Med. 38 (2019)","DOI":"10.1002\/jum.14953"},{"key":"4_CR9","doi-asserted-by":"crossref","unstructured":"Sindhwani, N., et al.: Semi-automatic outlining of levator hiatus. Ultrasound Obstetr. Gynecol. 48, 09 (2015)","DOI":"10.1002\/uog.15777"},{"key":"4_CR10","doi-asserted-by":"crossref","unstructured":"Stuart, A., Ignell, C., \u00d6rn\u00f6, A.-K.: Comparison of transperineal and endoanal ultrasound in detecting residual obstetric anal sphincter injury. Acta Obstetricia et Gynecologica Scandinavica 98(12), 1624\u20131631 (2019)","DOI":"10.1111\/aogs.13701"},{"key":"4_CR11","doi-asserted-by":"crossref","unstructured":"van den Noort, F., et al.: Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions. Ultrasound Obstetr. Gynecol. 54(2), 270\u2013275 (2019)","DOI":"10.1002\/uog.20181"},{"key":"4_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1007\/978-3-030-60334-2_14","volume-title":"Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis","author":"H Williams","year":"2020","unstructured":"Williams, H., et al.: Automatic C-plane detection in pelvic floor transperineal volumetric ultrasound. In: Hu, Y., et al. (eds.) ASMUS\/PIPPI -2020. LNCS, vol. 12437, pp. 136\u2013145. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-60334-2_14"},{"key":"4_CR13","doi-asserted-by":"crossref","unstructured":"Zhang, H., Cisse, M., Dauphin, Y., Lopez-Paz, D.: Mixup: beyond empirical risk minimization, 10 2017","DOI":"10.1007\/978-1-4899-7687-1_79"},{"key":"4_CR14","doi-asserted-by":"crossref","unstructured":"\u00c7i\u00e7ek, \u00d6., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation (2016)","DOI":"10.1007\/978-3-319-46723-8_49"}],"container-title":["Lecture Notes in Computer Science","Simplifying Medical Ultrasound"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87583-1_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T11:37:30Z","timestamp":1632310650000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87583-1_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030875824","9783030875831"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87583-1_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"21 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ASMUS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Advances in Simplifying Medical Ultrasound","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"asmus2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/miccai-ultrasound.github.io\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"73% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference took place virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}