{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:15:04Z","timestamp":1726136104191},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030875824"},{"type":"electronic","value":"9783030875831"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87583-1_18","type":"book-chapter","created":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T11:37:12Z","timestamp":1632310632000},"page":"179-188","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Realistic Ultrasound Image Synthesis for Improved Classification of Liver Disease"],"prefix":"10.1007","author":[{"given":"Hui","family":"Che","sequence":"first","affiliation":[]},{"given":"Sumana","family":"Ramanathan","sequence":"additional","affiliation":[]},{"given":"David J.","family":"Foran","sequence":"additional","affiliation":[]},{"given":"John L.","family":"Nosher","sequence":"additional","affiliation":[]},{"given":"Vishal M.","family":"Patel","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3232-8193","authenticated-orcid":false,"given":"Ilker","family":"Hacihaliloglu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,21]]},"reference":[{"key":"18_CR1","doi-asserted-by":"crossref","unstructured":"Acharya, U.R., et\u00a0al.: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput. Biol. Med. 79, 250\u2013258 (2016)","DOI":"10.1016\/j.compbiomed.2016.10.022"},{"key":"18_CR2","doi-asserted-by":"crossref","unstructured":"Ali, I.S., Mohamed, M.F., Mahdy, Y.B.: Data augmentation for skin lesion using self-attention based progressive generative adversarial network. Exp. Syst. Appl. 165, 113922 (2019)","DOI":"10.1016\/j.eswa.2020.113922"},{"key":"18_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"795","DOI":"10.1007\/978-3-030-59725-2_77","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"AZ Alsinan","year":"2020","unstructured":"Alsinan, A.Z., Rule, C., Vives, M., Patel, V.M., Hacihaliloglu, I.: GAN-based realistic bone ultrasound image and label synthesis for improved segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 795\u2013804. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59725-2_77"},{"issue":"3","key":"18_CR4","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1016\/S1665-2681(19)31922-2","volume":"6","author":"D Amarapurkar","year":"2007","unstructured":"Amarapurkar, D., et al.: Prevalence of non-alcoholic fatty liver disease: population based study. Ann. Hepatol. 6(3), 161\u2013163 (2007)","journal-title":"Ann. Hepatol."},{"key":"18_CR5","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1016\/j.cmpb.2017.12.016","volume":"155","author":"M Biswas","year":"2018","unstructured":"Biswas, M., et al.: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput. Methods Prog. Biomed. 155, 165\u2013177 (2018)","journal-title":"Comput. Methods Prog. Biomed."},{"issue":"12","key":"18_CR6","doi-asserted-by":"publisher","first-page":"1895","DOI":"10.1007\/s11548-018-1843-2","volume":"13","author":"M Byra","year":"2018","unstructured":"Byra, M., et al.: Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 13(12), 1895\u20131903 (2018)","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"18_CR7","doi-asserted-by":"crossref","unstructured":"Che, H., Brown, L.G., Foran, D.J., Nosher, J.L., Hacihaliloglu, I.: Liver disease classification from ultrasound using multi-scale CNN. Int. J. Comput. Assist. Radiol. Surg. 16, 1537-1548 (2021)","DOI":"10.1007\/s11548-021-02414-0"},{"issue":"5","key":"18_CR8","doi-asserted-by":"publisher","first-page":"650","DOI":"10.1111\/j.1478-3231.2008.01693.x","volume":"28","author":"JK Gaidos","year":"2008","unstructured":"Gaidos, J.K., Hillner, B.E., Sanyal, A.J.: A decision analysis study of the value of a liver biopsy in nonalcoholic steatohepatitis. Liver Int. 28(5), 650\u2013658 (2008)","journal-title":"Liver Int."},{"issue":"11","key":"18_CR9","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1145\/3422622","volume":"63","author":"I Goodfellow","year":"2020","unstructured":"Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139\u2013144 (2020)","journal-title":"Commun. ACM"},{"key":"18_CR10","unstructured":"Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500 (2017)"},{"key":"18_CR11","doi-asserted-by":"crossref","unstructured":"Kazeminia, S., et al..: Gans for medical image analysis. Artif. Intell. Med. 109, 101938 (2020)","DOI":"10.1016\/j.artmed.2020.101938"},{"issue":"22","key":"18_CR12","doi-asserted-by":"publisher","first-page":"6821","DOI":"10.3748\/wjg.v20.i22.6821","volume":"20","author":"N Khov","year":"2014","unstructured":"Khov, N., Sharma, A., Riley, T.R.: Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease. World J. Stroenterol. WJG 20(22), 6821 (2014)","journal-title":"World J. Stroenterol. WJG"},{"key":"18_CR13","doi-asserted-by":"crossref","unstructured":"Lan, H., Toga, A.W., Sepehrband, F., Initiative, A.D.N., et al.: SC-GAN: 3D self-attention conditional GAN with spectral normalization for multi-modal neuroimaging synthesis. bioRxiv (2020)","DOI":"10.1101\/2020.06.09.143297"},{"issue":"8","key":"18_CR14","doi-asserted-by":"publisher","first-page":"530","DOI":"10.4254\/wjh.v10.i8.530","volume":"10","author":"Q Li","year":"2018","unstructured":"Li, Q., Dhyani, M., Grajo, J.R., Sirlin, C., Samir, A.E.: Current status of imaging in nonalcoholic fatty liver disease. World J. Hepatol. 10(8), 530 (2018)","journal-title":"World J. Hepatol."},{"issue":"1","key":"18_CR15","doi-asserted-by":"publisher","first-page":"149","DOI":"10.3390\/s17010149","volume":"17","author":"X Liu","year":"2017","unstructured":"Liu, X., Song, J.L., Wang, S.H., Zhao, J.W., Chen, Y.Q.: Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors (Basel, Switzerland) 17(1), 149 (2017)","journal-title":"Sensors (Basel, Switzerland)"},{"key":"18_CR16","first-page":"5804","volume":"5","author":"D Meng","year":"2017","unstructured":"Meng, D., Zhang, L., Cao, G., Cao, W., Zhang, G., Hu, B.: Liver fibrosis classification based on transfer learning and fcnet for ultrasound images. IEEE Access 5, 5804\u20135810 (2017)","journal-title":"IEEE Access"},{"key":"18_CR17","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation (2016)","DOI":"10.1109\/3DV.2016.79"},{"key":"18_CR18","unstructured":"Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)"},{"issue":"2","key":"18_CR19","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1002\/hep4.1134","volume":"2","author":"P Nasr","year":"2018","unstructured":"Nasr, P., Ignatova, S., Kechagias, S., Ekstedt, M.: Natural history of nonalcoholic fatty liver disease: a prospective follow-up study with serial biopsies. Hepatol. Commun. 2(2), 199\u2013210 (2018)","journal-title":"Hepatol. Commun."},{"key":"18_CR20","unstructured":"Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)"},{"key":"18_CR21","doi-asserted-by":"crossref","unstructured":"Reddy, D.S., Bharath, R., Rajalakshmi, P.: Classification of nonalcoholic fatty liver texture using convolution neural networks. In: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1\u20135 (2018)","DOI":"10.1109\/HealthCom.2018.8531193"},{"issue":"6","key":"18_CR22","doi-asserted-by":"publisher","first-page":"W320","DOI":"10.2214\/AJR.07.2123","volume":"189","author":"S Strauss","year":"2007","unstructured":"Strauss, S., Gavish, E., Gottlieb, P., Katsnelson, L.: Interobserver and intraobserver variability in the sonographic assessment of fatty liver. Am. J. Roentgenol. 189(6), W320\u2013W323 (2007)","journal-title":"Am. J. Roentgenol."},{"key":"18_CR23","unstructured":"Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105\u20136114. PMLR (2019)"},{"issue":"8","key":"18_CR24","doi-asserted-by":"publisher","first-page":"756","DOI":"10.1056\/NEJMra1610570","volume":"377","author":"EB Tapper","year":"2017","unstructured":"Tapper, E.B., Lok, A.S.F.: Use of liver imaging and biopsy in clinical practice. New Engl. J. Med. 377(8), 756\u2013768 (2017)","journal-title":"New Engl. J. Med."},{"issue":"14","key":"18_CR25","doi-asserted-by":"publisher","first-page":"1341","DOI":"10.1056\/NEJMra0912063","volume":"363","author":"G Targher","year":"2010","unstructured":"Targher, G., Day, C.P., Bonora, E.: Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. New Engl. J. Med. 363(14), 1341\u20131350 (2010)","journal-title":"New Engl. J. Med."},{"key":"18_CR26","doi-asserted-by":"crossref","unstructured":"Xu, L., Zeng, X., Huang, Z., Li, W., Zhang, H.: Low-dose chest x-ray image super-resolution using generative adversarial nets with spectral normalization. Biomed. Sig. Process. Control 55, 101600 (2020)","DOI":"10.1016\/j.bspc.2019.101600"},{"key":"18_CR27","doi-asserted-by":"crossref","unstructured":"Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)","DOI":"10.1016\/j.media.2019.101552"},{"key":"18_CR28","unstructured":"Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354\u20137363. PMLR (2019)"}],"container-title":["Lecture Notes in Computer Science","Simplifying Medical Ultrasound"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87583-1_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T11:41:06Z","timestamp":1632310866000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87583-1_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030875824","9783030875831"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87583-1_18","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"21 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ASMUS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Advances in Simplifying Medical Ultrasound","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"asmus2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/miccai-ultrasound.github.io\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"73% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference took place virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}