{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T07:56:59Z","timestamp":1742975819922,"version":"3.40.3"},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030875701"},{"type":"electronic","value":"9783030875718"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87571-8_56","type":"book-chapter","created":{"date-parts":[[2021,9,16]],"date-time":"2021-09-16T09:02:47Z","timestamp":1631782967000},"page":"647-658","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Fabric Defect Target Detection Algorithm Based on YOLOv4 Improvement"],"prefix":"10.1007","author":[{"given":"Ying","family":"Wang","sequence":"first","affiliation":[]},{"given":"Zhengyang","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Fang","family":"Zuo","sequence":"additional","affiliation":[]},{"given":"Zixiang","family":"Su","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,17]]},"reference":[{"issue":"8","key":"56_CR1","first-page":"1289","volume":"43","author":"H Zhang","year":"2017","unstructured":"Zhang, H., Wang, K.F., Wang, F.Y.: Advances and perspectives on applications of deep learning in visual object detection. Zidonghua Xuebao\/Acta Automatica Sinica 43(8), 1289\u20131305 (2017)","journal-title":"Zidonghua Xuebao\/Acta Automatica Sinica"},{"key":"56_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"326","DOI":"10.1007\/978-3-030-60029-7_30","volume-title":"Web Information Systems and Applications","author":"R Chen","year":"2020","unstructured":"Chen, R., Jin, Yu., Xu, L.: A classroom student counting system based on improved context-based face detector. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds.) WISA 2020. LNCS, vol. 12432, pp. 326\u2013332. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-60029-7_30"},{"unstructured":"Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv:2004.10934 (2020)","key":"56_CR3"},{"issue":"3","key":"56_CR4","doi-asserted-by":"publisher","first-page":"1014","DOI":"10.1109\/TASE.2017.2696748","volume":"15","author":"D Yapi","year":"2017","unstructured":"Yapi, D., Allili, M.S., et al.: Automatic fabric defect detection using learning-based local textural distributions in the contourlet domain. IEEE Trans. Autom. Sci. Eng. 15(3), 1014\u20131026 (2017)","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"doi-asserted-by":"crossref","unstructured":"Vaibhav, M., Karlekar, V., Bhangale, K., et al.: Fabric defect detection using wavelet filter. In: 2015 International Conference on Computing Communication Control and Automation. IEEE (2015)","key":"56_CR5","DOI":"10.1109\/ICCUBEA.2015.145"},{"issue":"MAY17","key":"56_CR6","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1016\/j.neucom.2017.01.039","volume":"238","author":"L Jia","year":"2017","unstructured":"Jia, L., Chen, C., Liang, J., et al.: Fabric defect inspection based on lattice segmentation and Gabor filtering. Neurocomputing 238(MAY17), 84\u2013102 (2017)","journal-title":"Neurocomputing"},{"issue":"12","key":"56_CR7","first-page":"110","volume":"37","author":"C Deng","year":"2018","unstructured":"Deng, C., Liu, Y.: Defect detection of twill cloth based on edge detection. Meas. Control Technol. 37(12), 110\u2013113 (2018)","journal-title":"Meas. Control Technol."},{"doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580\u2013587, June 2014","key":"56_CR8","DOI":"10.1109\/CVPR.2014.81"},{"issue":"9","key":"56_CR9","doi-asserted-by":"publisher","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","volume":"37","author":"K He","year":"2014","unstructured":"He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904\u201316 (2014)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1440\u20131448, December 2015","key":"56_CR10","DOI":"10.1109\/ICCV.2015.169"},{"unstructured":"Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91\u201399 (2015)","key":"56_CR11"},{"doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779\u2013788 (2015)","key":"56_CR12","DOI":"10.1109\/CVPR.2016.91"},{"key":"56_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-319-46448-0_2","volume-title":"Computer Vision \u2013 ECCV 2016","author":"W Liu","year":"2016","unstructured":"Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21\u201337. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2"},{"doi-asserted-by":"crossref","unstructured":"Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263\u20137271 (2017)","key":"56_CR14","DOI":"10.1109\/CVPR.2017.690"},{"unstructured":"Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)","key":"56_CR15"},{"doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. (99), 2999\u20133007 (2017)","key":"56_CR16","DOI":"10.1109\/ICCV.2017.324"},{"doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3\u201319 (2018)","key":"56_CR17","DOI":"10.1007\/978-3-030-01234-2_1"},{"unstructured":"Jie, H., Li, S., Gang, S.: Squeeze-and-excitation networks. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2018)","key":"56_CR18"},{"doi-asserted-by":"crossref","unstructured":"Neubeck, A., Gool, L.: Efficient non-maximum suppression. In: International Conference on Pattern Recognition (2006)","key":"56_CR19","DOI":"10.1109\/ICPR.2006.479"}],"container-title":["Lecture Notes in Computer Science","Web Information Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87571-8_56","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T17:56:19Z","timestamp":1709834179000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87571-8_56"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030875701","9783030875718"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87571-8_56","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"17 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"WISA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Web Information Systems and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kaifeng","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"wisa22021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.wisa.org.cn\/wisa2021\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"206","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"49","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6,5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}