{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:09:30Z","timestamp":1728176970866},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030872397"},{"type":"electronic","value":"9783030872403"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87240-3_22","type":"book-chapter","created":{"date-parts":[[2021,9,23]],"date-time":"2021-09-23T07:44:03Z","timestamp":1632383043000},"page":"225-235","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":48,"title":["Source-Free Domain Adaptive Fundus Image Segmentation with Denoised Pseudo-Labeling"],"prefix":"10.1007","author":[{"given":"Cheng","family":"Chen","sequence":"first","affiliation":[]},{"given":"Quande","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yueming","family":"Jin","sequence":"additional","affiliation":[]},{"given":"Qi","family":"Dou","sequence":"additional","affiliation":[]},{"given":"Pheng-Ann","family":"Heng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,21]]},"reference":[{"key":"22_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"490","DOI":"10.1007\/978-3-030-59710-8_48","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"M Bateson","year":"2020","unstructured":"Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ben Ayed, I.: Source-relaxed domain adaptation for image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 490\u2013499. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59710-8_48"},{"issue":"7","key":"22_CR2","doi-asserted-by":"publisher","first-page":"2494","DOI":"10.1109\/TMI.2020.2972701","volume":"39","author":"C Chen","year":"2020","unstructured":"Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494\u20132505 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"22_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"833","DOI":"10.1007\/978-3-030-01234-2_49","volume-title":"Computer Vision \u2013 ECCV 2018","author":"L-C Chen","year":"2018","unstructured":"Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833\u2013851. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_49"},{"key":"22_CR4","doi-asserted-by":"crossref","unstructured":"Fumero, F., Alay\u00f3n, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: International Symposium on Computer-Based Medical Systems, pp. 1\u20136. IEEE (2011)","DOI":"10.1109\/CBMS.2011.5999143"},{"key":"22_CR5","unstructured":"Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML, pp. 1050\u20131059. PMLR (2016)"},{"key":"22_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"516","DOI":"10.1007\/978-3-319-66179-7_59","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2017","author":"M Ghafoorian","year":"2017","unstructured":"Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516\u2013524. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66179-7_59"},{"key":"22_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"506","DOI":"10.1007\/978-3-030-00937-3_58","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"E Gibson","year":"2018","unstructured":"Gibson, E., et al.: Inter-site variability in prostate segmentation accuracy using deep learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 506\u2013514. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00937-3_58"},{"key":"22_CR8","unstructured":"Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML, pp. 1321\u20131330. PMLR (2017)"},{"key":"22_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1007\/978-3-030-59710-8_43","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"Y He","year":"2020","unstructured":"He, Y., Carass, A., Zuo, L., Dewey, B.E., Prince, J.L.: Self domain adapted network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 437\u2013446. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59710-8_43"},{"issue":"4","key":"22_CR10","first-page":"1016","volume":"38","author":"Y Huo","year":"2018","unstructured":"Huo, Y., et al.: SynSeg-Net: synthetic segmentation without target modality ground truth. IEEE TMI 38(4), 1016\u20131025 (2018)","journal-title":"IEEE TMI"},{"key":"22_CR11","doi-asserted-by":"crossref","unstructured":"Ju, L., Wang, X., Zhao, X., Bonnington, P., Drummond, T., Ge, Z.: Leveraging regular fundus images for training UWF fundus diagnosis models via adversarial learning and pseudo-labeling. arXiv preprint arXiv:2011.13816 (2020)","DOI":"10.1109\/TMI.2021.3056395"},{"key":"22_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"597","DOI":"10.1007\/978-3-319-59050-9_47","volume-title":"Information Processing in Medical Imaging","author":"K Kamnitsas","year":"2017","unstructured":"Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597\u2013609. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-59050-9_47"},{"key":"22_CR13","first-page":"101907","volume":"68","author":"N Karani","year":"2021","unstructured":"Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. MIA 68, 101907 (2021)","journal-title":"MIA"},{"key":"22_CR14","unstructured":"Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3 (2013)"},{"key":"22_CR15","doi-asserted-by":"publisher","first-page":"101570","DOI":"10.1016\/j.media.2019.101570","volume":"59","author":"JI Orlando","year":"2020","unstructured":"Orlando, J.I., Fu, H., Breda, J.B., van Keer, K., Bathula, D.R., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)","journal-title":"Med. Image Anal."},{"key":"22_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.neuroimage.2019.03.026","volume":"194","author":"CS Perone","year":"2019","unstructured":"Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. NeuroImage 194, 1\u201311 (2019)","journal-title":"NeuroImage"},{"key":"22_CR17","unstructured":"Sivaswamy, J., Krishnadas, S., Chakravarty, A., Joshi, G., Tabish, A.S., et al.: A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Pap. 2(1), 1004 (2015)"},{"key":"22_CR18","unstructured":"Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. arXiv preprint arXiv:1703.05175 (2017)"},{"key":"22_CR19","unstructured":"Stan, S., Rostami, M.: Privacy preserving domain adaptation for semantic segmentation of medical images. arXiv preprint arXiv:2101.00522 (2021)"},{"key":"22_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"428","DOI":"10.1007\/978-3-030-59710-8_42","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"T Varsavsky","year":"2020","unstructured":"Varsavsky, T., Orbes-Arteaga, M., Sudre, C.H., Graham, M.S., Nachev, P., Cardoso, M.J.: Test-time unsupervised domain adaptation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 428\u2013436. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59710-8_42"},{"key":"22_CR21","doi-asserted-by":"crossref","unstructured":"Vu, T.H., Jain, H., Bucher, M., et al.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517\u20132526 (2019)","DOI":"10.1109\/CVPR.2019.00262"},{"key":"22_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1007\/978-3-030-32239-7_12","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"S Wang","year":"2019","unstructured":"Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., Heng, P.-A.: Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 102\u2013110. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32239-7_12"},{"key":"22_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-030-32239-7_82","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"F Xing","year":"2019","unstructured":"Xing, F., Bennett, T., Ghosh, D.: Adversarial domain adaptation and pseudo-labeling for cross-modality microscopy image quantification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 740\u2013749. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32239-7_82"},{"key":"22_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"481","DOI":"10.1007\/978-3-030-00934-2_54","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"L Zhang","year":"2018","unstructured":"Zhang, L., Perea\u00f1ez, M., Piechnik, S.K., Neubauer, S., Petersen, S.E., Frangi, A.F.: Multi-input and dataset-invariant adversarial learning (MDAL) for left and right-ventricular coverage estimation in cardiac MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 481\u2013489. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00934-2_54"},{"key":"22_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"599","DOI":"10.1007\/978-3-030-00934-2_67","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"Y Zhang","year":"2018","unstructured":"Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599\u2013607. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00934-2_67"},{"key":"22_CR26","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: CVPR, pp. 9242\u20139251 (2018)","DOI":"10.1109\/CVPR.2018.00963"},{"issue":"1","key":"22_CR27","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1109\/TMI.2018.2854886","volume":"38","author":"H Zhao","year":"2018","unstructured":"Zhao, H., Li, H., Maurer-Stroh, S., Guo, Y., Deng, Q., Cheng, L.: Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE Trans. Med. Imaging 38(1), 46\u201356 (2018)","journal-title":"IEEE Trans. Med. Imaging"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87240-3_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,4]],"date-time":"2021-12-04T23:04:30Z","timestamp":1638659070000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87240-3_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030872397","9783030872403"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87240-3_22","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"21 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/miccai2021.org\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1622","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"531","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}