{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:26:26Z","timestamp":1727065586949},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030872366"},{"type":"electronic","value":"9783030872373"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87237-3_7","type":"book-chapter","created":{"date-parts":[[2021,9,23]],"date-time":"2021-09-23T06:19:41Z","timestamp":1632377981000},"page":"65-75","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":23,"title":["BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework for Segmenting and Classifying OCTA Images"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9789-0825","authenticated-orcid":false,"given":"Li","family":"Lin","sequence":"first","affiliation":[]},{"given":"Zhonghua","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jiewei","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Yijin","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Junyan","family":"Lyu","sequence":"additional","affiliation":[]},{"given":"Pujin","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"Jiong","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Xiaoying","family":"Tang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,21]]},"reference":[{"doi-asserted-by":"crossref","unstructured":"Agarwal, A., Balaji, J., Raman, R., Lakshminarayanan, V.: The Foveal avascular zone image database (FAZID). In: Applications of Digital Image Processing XLIII, vol. 11510, pp. 1151027. International Society for Optics and Photonics (2020)","key":"7_CR1","DOI":"10.1117\/12.2567580"},{"doi-asserted-by":"crossref","unstructured":"Alam, M., Le, D., Lim, J., Chan, R., Yao, X.: Supervised machine learning based multi-task artificial intelligence classification of retinopathies. J. Clin. Med. 8(6), 872 (2019)","key":"7_CR2","DOI":"10.3390\/jcm8060872"},{"doi-asserted-by":"publisher","unstructured":"Andreeva, R., Fontanella, A., Giarratano, Y., Bernabeu, M.: DR detection using optical coherence tomography angiography (OCTA): a transfer learning approach with robustness analysis. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) International Workshop on Ophthalmic Medical Image Analysis, vol. 12069, pp. 11\u201320. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-63419-3_2","key":"7_CR3","DOI":"10.1007\/978-3-030-63419-3_2"},{"doi-asserted-by":"crossref","unstructured":"Balaji, J., Agarwal, A., Raman, R., Lakshminarayanan, V.: Comparison of foveal avascular zone in diabetic retinopathy, high myopia, and normal fundus images. In: Ophthalmic Technologies XXX, vol. 11218, pp. 1121810. International Society for Optics and Photonics (2020)","key":"7_CR4","DOI":"10.1117\/12.2544817"},{"doi-asserted-by":"crossref","unstructured":"Chen, L., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Proceedings of the European Conference on Computer Vision (ECCV). LNCS, vol. 11211, pp. 801\u2013818 (2018)","key":"7_CR5","DOI":"10.1007\/978-3-030-01234-2_49"},{"doi-asserted-by":"crossref","unstructured":"De Carlo, T., Romano, A., Waheed, N., Duker, J.: A review of optical coherence tomography angiography (OCTA). Int. J. Retin. Vitr. 1(1), 5 (2015)","key":"7_CR6","DOI":"10.1186\/s40942-015-0005-8"},{"doi-asserted-by":"crossref","unstructured":"D\u00edaz, M., Novo, J., Cutr\u00edn, P., G\u00f3mez-Ulla, F., Penedo, M., Ortega, M.: Automatic segmentation of the Foveal avascular zone in ophthalmological OCT-A images. PLoS One 14(2), e0212364 (2019)","key":"7_CR7","DOI":"10.1371\/journal.pone.0212364"},{"doi-asserted-by":"crossref","unstructured":"Guo, M., Zhao, M., Cheong, A., Dai, H., Lam, A., Zhou, Y.: Automatic quantification of superficial foveal avascular zone in optical coherence tomography angiography implemented with deep learning. Vis. Comput. Ind. Biomed. Art 2(1), 1\u20139 (2019)","key":"7_CR8","DOI":"10.1186\/s42492-019-0031-8"},{"doi-asserted-by":"crossref","unstructured":"Haddouche, A., Adel, M., Rasigni, M., Conrath, J., Bourennane, S.: Detection of the foveal avascular zone on retinal angiograms using Markov random fields. Digital Sig. Process. 20(1), 149\u2013154 (2010)","key":"7_CR9","DOI":"10.1016\/j.dsp.2009.06.005"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","key":"7_CR10","DOI":"10.1109\/CVPR.2016.90"},{"unstructured":"Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imag. 28(8), 1251\u20131265 (2009)","key":"7_CR11"},{"doi-asserted-by":"crossref","unstructured":"Le, D., et al.: Transfer learning for automated OCTA detection of diabetic retinopathy. Transl. Vis. Sci. Technol. 9(2), 35 (2020)","key":"7_CR12","DOI":"10.1167\/tvst.9.2.35"},{"doi-asserted-by":"crossref","unstructured":"Leitgeb, R.: En face optical coherence tomography: a technology review. Biomed. Opt. Express 10(5), 2177\u20132201 (2019)","key":"7_CR13","DOI":"10.1364\/BOE.10.002177"},{"doi-asserted-by":"crossref","unstructured":"Li, M., et al.: Image projection network: 3D to 2D image segmentation in octa images. IEEE Trans. Med. Imag. 39(11), 3343\u20133354 (2020)","key":"7_CR14","DOI":"10.1109\/TMI.2020.2992244"},{"unstructured":"Li, M., et al.: IPN-V2 and OCTA-500: methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261 (2020)","key":"7_CR15"},{"doi-asserted-by":"crossref","unstructured":"Li, M., Wang, Y., Ji, Z., Fan, W., Yuan, S., Chen, Q.: Fast and robust fovea detection framework for OCT images based on Foveal avascular zone segmentation. OSA Continuum 3(3), 528\u2013541 (2020)","key":"7_CR16","DOI":"10.1364\/OSAC.381120"},{"doi-asserted-by":"crossref","unstructured":"Linderman, R., Salmon, A., Strampe, M., Russillo, M., Khan, J., Carroll, J.: Assessing the accuracy of Foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling. Transl. Vis. Sci. Technol. 6(3), 16 (2017)","key":"7_CR17","DOI":"10.1167\/tvst.6.3.16"},{"doi-asserted-by":"crossref","unstructured":"Lu, Y., et al.: Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 59(6), 2212\u20132221 (2018)","key":"7_CR18","DOI":"10.1167\/iovs.17-23498"},{"unstructured":"Ma, Y., et al.: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imag. (2020, in Press)","key":"7_CR19"},{"doi-asserted-by":"publisher","unstructured":"Mehta, S., et al.: Y-Net: joint segmentation and classification for diagnosis of breast biopsy images. In: In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. MICCAI 2018. LNCS, vol. 11071, pp. 893\u2013901. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00934-2_99","key":"7_CR20","DOI":"10.1007\/978-3-030-00934-2_99"},{"doi-asserted-by":"crossref","unstructured":"Ometto, G., Montesano, G., Chakravarthy, U., Kee, F., Hogg, R., Crabb, D.: Fast 3-dimensional estimation of the foveal avascular zone from OCTA. arXiv preprint arXiv:2012.09945 (2020)","key":"7_CR21","DOI":"10.1109\/I2MTC50364.2021.9460087"},{"doi-asserted-by":"publisher","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Maier-Hein, G.E.B., Fritzsche, K., Deserno, G.E.B., Lehmann, T., Handels, H., Tolxdorff, T. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28","key":"7_CR22","DOI":"10.1007\/978-3-319-24574-4_28"},{"doi-asserted-by":"crossref","unstructured":"Salles, M., Kvanta, A., Amr\u00e9n, U., Epstein, D.: Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity. Investig. Ophthalmol. Vis. Sci. 57(9), OCT242\u2013OCT246 (2016)","key":"7_CR23","DOI":"10.1167\/iovs.15-18819"},{"doi-asserted-by":"crossref","unstructured":"Silva, A., et al.: Segmentation of Foveal avascular zone of the retina based on morphological alternating sequential filtering. In: Proceedings of the IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 38\u201343 (2015)","key":"7_CR24","DOI":"10.1109\/CBMS.2015.65"},{"unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)","key":"7_CR25"},{"doi-asserted-by":"crossref","unstructured":"Tan, C., et al.: Deep multi-task and task-specific feature learning network for robust shape preserved organ segmentation. In: IEEE International Symposium on Biomedical Imaging, pp. 1221\u20131224 (2018)","key":"7_CR26","DOI":"10.1109\/ISBI.2018.8363791"},{"doi-asserted-by":"publisher","unstructured":"Wijnen, K., et al.: Automated Lesion detection by regressing intensity-based distance with a neural network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, pp. 234\u2013242. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32251-9_26","key":"7_CR27","DOI":"10.1007\/978-3-030-32251-9_26"},{"doi-asserted-by":"crossref","unstructured":"Xie, S., Girshick, R., Doll\u00e1r, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492\u20131500 (2017)","key":"7_CR28","DOI":"10.1109\/CVPR.2017.634"},{"unstructured":"Zhang, H., et al.: ResNeSt: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)","key":"7_CR29"},{"doi-asserted-by":"crossref","unstructured":"Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881\u20132890 (2017)","key":"7_CR30","DOI":"10.1109\/CVPR.2017.660"},{"doi-asserted-by":"crossref","unstructured":"Zheng, Y., Gandhi, J., Stangos, A., Campa, C., Broadbent, D., Harding, S.: Automated segmentation of foveal avascular zone in Fundus Fluorescein angiography. Investig. Ophthalmol. Vis. Sci. 51(7), 3653\u20133659 (2010)","key":"7_CR31","DOI":"10.1167\/iovs.09-4935"},{"doi-asserted-by":"crossref","unstructured":"Zhou, Z., Siddiquee, M., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imag. 39(6), 1856\u20131867 (2019)","key":"7_CR32","DOI":"10.1109\/TMI.2019.2959609"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87237-3_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T00:36:51Z","timestamp":1673311011000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87237-3_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030872366","9783030872373"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87237-3_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"21 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/miccai2021.org\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1622","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"531","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}