{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:04:48Z","timestamp":1726135488845},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030871550"},{"type":"electronic","value":"9783030871567"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87156-7_13","type":"book-chapter","created":{"date-parts":[[2021,9,18]],"date-time":"2021-09-18T04:02:54Z","timestamp":1631937774000},"page":"159-168","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Video Popularity Prediction Through Fusing Early Viewership with Video Content"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9738-1553","authenticated-orcid":false,"given":"Alexandros","family":"Vrochidis","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6650-7758","authenticated-orcid":false,"given":"Nikolaos","family":"Dimitriou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9666-7023","authenticated-orcid":false,"given":"Stelios","family":"Krinidis","sequence":"additional","affiliation":[]},{"given":"Savvas","family":"Panagiotidis","sequence":"additional","affiliation":[]},{"given":"Stathis","family":"Parcharidis","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6915-6722","authenticated-orcid":false,"given":"Dimitrios","family":"Tzovaras","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,19]]},"reference":[{"key":"13_CR1","series-title":"Proceedings of the International Neural Networks Society","doi-asserted-by":"publisher","first-page":"465","DOI":"10.1007\/978-3-030-80568-5_38","volume-title":"Proceedings of the 22nd Engineering Applications of Neural Networks Conference","author":"A Vrochidis","year":"2021","unstructured":"Vrochidis, A., Dimitriou, N., Krinidis, S., Panagiotidis, S., Parcharidis, S., Tzovaras, D.: A multi-modal audience analysis system for predicting popularity of online videos. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds.) EANN 2021. PINNS, vol. 3, pp. 465\u2013476. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-80568-5_38"},{"key":"13_CR2","doi-asserted-by":"crossref","unstructured":"Tavakoli, M., Hakimov, S., Ewerth, R., Kismih\u00f3k, G.: A recommender system for open educational videos based on skill requirements. In: IEEE 20th International Conference on Advanced Learning Technologies, pp. 1\u20135 (2020)","DOI":"10.1109\/ICALT49669.2020.00008"},{"key":"13_CR3","doi-asserted-by":"crossref","unstructured":"Meng, X., et al.: A video information driven football recommendation system. Comput. Electr. Eng. 85 (2020)","DOI":"10.1016\/j.compeleceng.2020.106699"},{"key":"13_CR4","doi-asserted-by":"crossref","unstructured":"Zhu, Q., Shyu, M., Wang, H.: VideoTopic: content-based video recommendation using a topic model. In: IEEE International Symposium on Multimedia, pp. 219\u2013222 (2013)","DOI":"10.1109\/ISM.2013.41"},{"key":"13_CR5","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1007\/s13740-016-0060-9","volume":"5","author":"Y Deldjoo","year":"2016","unstructured":"Deldjoo, Y., Elahi, M., Cremonesi, P., Garzotto, F., Piazzolla, P., Quadrana, M.: Content-based video recommendation system based on stylistic visual features. J. Data Semant. 5, 99\u2013113 (2016)","journal-title":"J. Data Semant."},{"key":"13_CR6","doi-asserted-by":"crossref","unstructured":"Wu, S., Rizoiu, M.A., Xie, L.: Beyond views: measuring and predicting engagement in online videos. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 12, no. 1 (2018)","DOI":"10.1609\/icwsm.v12i1.15031"},{"key":"13_CR7","doi-asserted-by":"crossref","unstructured":"Li, H., Ma, X., Wang, F., Liu, J., Xu, K.: On popularity prediction of videos shared in online social networks. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management (2013)","DOI":"10.1145\/2505515.2505523"},{"issue":"11","key":"13_CR8","doi-asserted-by":"publisher","first-page":"2561","DOI":"10.1109\/TMM.2017.2695439","volume":"19","author":"T Trzci\u0144ski","year":"2017","unstructured":"Trzci\u0144ski, T., Rokita, P.: Predicting popularity of online videos using support vector regression. IEEE Trans. Multimedia 19(11), 2561\u20132570 (2017)","journal-title":"IEEE Trans. Multimedia"},{"issue":"7","key":"13_CR9","doi-asserted-by":"publisher","first-page":"1426","DOI":"10.1109\/TKDE.2017.2682858","volume":"29","author":"W Hoiles","year":"2017","unstructured":"Hoiles, W., Aprem, A., Krishnamurthy, V.: Engagement and popularity dynamics of YouTube videos and sensitivity to meta-data. IEEE Trans. Knowl. Data Eng. 29(7), 1426\u20131437 (2017)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"13_CR10","doi-asserted-by":"crossref","unstructured":"Pinto, H., Almeida, J.M., Goncalves, M.A.: Using early view patterns to predict the popularity of YouTube videos. In: Proceedings of the sixth ACM International Conference on Web Search and Data Mining, pp. 365\u2013374 (2013)","DOI":"10.1145\/2433396.2433443"},{"key":"13_CR11","unstructured":"Li, Y., Eng, K., Zhang, L.: YouTube Videos Prediction: Will this Video Be Popular? Stanford University (2019)"},{"issue":"2","key":"13_CR12","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1007\/s00464-017-5878-1","volume":"32","author":"C Loukas","year":"2017","unstructured":"Loukas, C.: Video content analysis of surgical procedures. Surg. Endosc. 32(2), 553\u2013568 (2017). https:\/\/doi.org\/10.1007\/s00464-017-5878-1","journal-title":"Surg. Endosc."},{"key":"13_CR13","doi-asserted-by":"publisher","unstructured":"Jacob, J., Sudheep Elayidom, M., Devassia, V.P.: An innovative approach for aerial video surveillance using video content analysis and indexing. In: Chen, J.Z., Tavares, J., Shakya, S., Iliyasu, A. (eds.) ICIPCN 2020. AISC, vol. 1200, pp. 574\u2013583. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-51859-2_52.","DOI":"10.1007\/978-3-030-51859-2_52"},{"key":"13_CR14","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1007\/s00138-014-0646-x","volume":"26","author":"J Zhu","year":"2015","unstructured":"Zhu, J., Luo, J., Soh, J.M., Khalifa, Y.M.: A computer vision-based approach to grade simulated surgeries. Mach. Vis. Appl. 26, 115\u2013125 (2015)","journal-title":"Mach. Vis. Appl."},{"key":"13_CR15","doi-asserted-by":"crossref","unstructured":"Aljarrah, I., Mohammad, D.: Video content analysis using convolutional neural networks. In: 9th International Conference on Information and Communication Systems (2018)","DOI":"10.1109\/IACS.2018.8355453"},{"key":"13_CR16","doi-asserted-by":"crossref","unstructured":"Dimitriou, N., Delopoulos, A.: Improved motion segmentation using locally sampled subspaces. In: 19th IEEE International Conference on Image Processing, pp. 309\u2013312 (2012)","DOI":"10.1109\/ICIP.2012.6466857"},{"key":"13_CR17","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1016\/j.imavis.2013.06.005","volume":"31","author":"N Dimitriou","year":"2013","unstructured":"Dimitriou, N., Delopoulos, A.: Motion-based segmentation of objects using overlapping temporal windows. Image Vis. Comput. 31, 593\u2013602 (2013)","journal-title":"Image Vis. Comput."},{"key":"13_CR18","doi-asserted-by":"crossref","unstructured":"Moniruzzaman, M., Yin, Z., He, Z.H., Qin, R., Leu, M.: Human action recognition by discriminative feature pooling and video segmentation attention model. IEEE Trans. Multimedia (2021)","DOI":"10.1109\/TMM.2021.3058050"},{"key":"13_CR19","series-title":"IFIP Advances in Information and Communication Technology","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1007\/978-3-030-79157-5_27","volume-title":"Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops","author":"A Vrochidis","year":"2021","unstructured":"Vrochidis, A., et al.: A recommendation specific human activity recognition dataset with mobile device\u2019s sensor data. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds.) AIAI 2021. IAICT, vol. 628, pp. 327\u2013339. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-79157-5_27"},{"key":"13_CR20","doi-asserted-by":"crossref","unstructured":"Abbas, Q., Li, Y.: Cricket video events recognition using HOG, LBP and multi-class SVM. In: Journal of Physics: Conference Series, vol. 1732, no. 1 (2021)","DOI":"10.1088\/1742-6596\/1732\/1\/012036"},{"key":"13_CR21","doi-asserted-by":"crossref","unstructured":"Sun, Y., Li, P., Liu, Y., Jiang, Z.: Feature extraction and clustering for static video summarization (2021)","DOI":"10.21203\/rs.3.rs-344569\/v1"},{"key":"13_CR22","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1016\/j.ins.2021.03.027","volume":"568","author":"G Zheng","year":"2021","unstructured":"Zheng, G., Xu, Y.: Efficient face detection and tracking in video sequences based on deep learning. Inf. Sci. 568, 265\u2013285 (2021)","journal-title":"Inf. Sci."},{"key":"13_CR23","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1007\/s11263-020-01378-z","volume":"129","author":"Z Shao","year":"2021","unstructured":"Shao, Z., Liu, Z., Cai, J., Ma, L.: JAA-Net: joint facial action unit detection and face alignment via adaptive attention. Int. J. Comput. Vis. 129, 321\u2013340 (2021)","journal-title":"Int. J. Comput. Vis."},{"key":"13_CR24","doi-asserted-by":"crossref","unstructured":"Ekman, P., Rosenberg, E.L.: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford Un. Press (1997)","DOI":"10.1093\/oso\/9780195104462.001.0001"},{"key":"13_CR25","unstructured":"https:\/\/analytics.google.com"},{"issue":"2","key":"13_CR26","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1109\/T-AFFC.2013.4","volume":"4","author":"SM Mavadati","year":"2012","unstructured":"Mavadati, S.M., Mahoor, M.H., Barlett, K., Trinh, P., Cohn, J.F.: DISFA: a spontaneous facial action intensity database. IEEE Trans. Affect. Comput. 4(2), 151\u2013160 (2012)","journal-title":"IEEE Trans. Affect. Comput."},{"key":"13_CR27","unstructured":"Vafeiadis, A., et al.: Acoustic scene classification: from a hybrid classifier to deep learning. In: DCASE Workshop, Munich, Germany, pp. 123\u2013127 (2017)"},{"key":"13_CR28","unstructured":"https:\/\/www.livemedia.gr"},{"key":"13_CR29","doi-asserted-by":"publisher","first-page":"79","DOI":"10.3354\/cr030079","volume":"30","author":"CJ Willmott","year":"2005","unstructured":"Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30, 79\u201382 (2005)","journal-title":"Climate Res."}],"container-title":["Lecture Notes in Computer Science","Computer Vision Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87156-7_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,8]],"date-time":"2023-11-08T19:26:04Z","timestamp":1699471564000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87156-7_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030871550","9783030871567"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87156-7_13","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"19 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the decision to publish the results.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of Interest"}},{"value":"ICVS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computer Vision Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icvs2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/icvs.acin.tuwien.ac.at\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Open","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"29","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"20","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"69% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}