{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T09:56:46Z","timestamp":1726135006546},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030870065"},{"type":"electronic","value":"9783030870072"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-87007-2_26","type":"book-chapter","created":{"date-parts":[[2021,9,10]],"date-time":"2021-09-10T13:02:22Z","timestamp":1631278942000},"page":"368-381","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Assessing Ensemble Learning Techniques in Bug Prediction"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4216-1705","authenticated-orcid":false,"given":"Zsolt J\u00e1nos","family":"Szamosv\u00f6lgyi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8274-8992","authenticated-orcid":false,"given":"Endre Tam\u00e1s","family":"V\u00e1radi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2268-1877","authenticated-orcid":false,"given":"Zolt\u00e1n","family":"T\u00f3th","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6176-9401","authenticated-orcid":false,"given":"Judit","family":"J\u00e1sz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8897-7403","authenticated-orcid":false,"given":"Rudolf","family":"Ferenc","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,11]]},"reference":[{"key":"26_CR1","unstructured":"OpenStaticAnalyzer static code analyzer (2021). https:\/\/github.com\/sed-inf-u-szeged\/OpenStaticAnalyzer"},{"key":"26_CR2","doi-asserted-by":"publisher","unstructured":"Bejjanki, K.K., Gyani, J., Gugulothu, N.: Class imbalance reduction (CIR): a novel approach to software defect prediction in the presence of class imbalance. Symmetry 12(3) (2020). https:\/\/doi.org\/10.3390\/sym12030407. https:\/\/www.mdpi.com\/2073-8994\/12\/3\/407","DOI":"10.3390\/sym12030407"},{"issue":"4","key":"26_CR3","doi-asserted-by":"publisher","first-page":"4626","DOI":"10.1016\/j.eswa.2010.10.024","volume":"38","author":"C Catal","year":"2011","unstructured":"Catal, C.: Software fault prediction: a literature review and current trends. Expert Syst. Appl. 38(4), 4626\u20134636 (2011)","journal-title":"Expert Syst. Appl."},{"key":"26_CR4","doi-asserted-by":"publisher","unstructured":"Chaturvedi, K., Bedi, P., Misra, S., Singh, V.: An empirical validation of the complexity of code changes and bugs in predicting the release time of open source software. In: 2013 IEEE 16th International Conference on Computational Science and Engineering, pp. 1201\u20131206 (2013). https:\/\/doi.org\/10.1109\/CSE.2013.201","DOI":"10.1109\/CSE.2013.201"},{"key":"26_CR5","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321\u2013357 (2002)","journal-title":"J. Artif. Intell. Res."},{"key":"26_CR6","doi-asserted-by":"publisher","unstructured":"Compton, R., Frank, E., Patros, P., Koay, A.: Embedding java classes with code2vec: improvements from variable obfuscation. In: Proceedings of the 17th International Conference on Mining Software Repositories. MSR 2020. pp. 243\u2013253. Association for Computing Machinery, New York (2020). https:\/\/doi.org\/10.1145\/3379597.3387445","DOI":"10.1145\/3379597.3387445"},{"key":"26_CR7","doi-asserted-by":"publisher","unstructured":"D\u2019Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction approaches. In: 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), pp. 31\u201341 (2010). https:\/\/doi.org\/10.1109\/MSR.2010.5463279","DOI":"10.1109\/MSR.2010.5463279"},{"key":"26_CR8","doi-asserted-by":"publisher","unstructured":"Ferenc, R., B\u00e1n, D., Gr\u00f3sz, T., Gyim\u00f3thy, T.: Deep learning in static, metric-based bug prediction. Array 6, 100021 (2020). https:\/\/doi.org\/10.1016\/j.array.2020.100021, http:\/\/www.sciencedirect.com\/science\/article\/pii\/S2590005620300060","DOI":"10.1016\/j.array.2020.100021"},{"key":"26_CR9","unstructured":"Ferenc, R., Siket, I., Heged\u0171s, P., Rajk\u00f3, R.: Employing partial least squares regression with discriminant analysis for bug prediction. arXiv e-prints arXiv:2011.01214 (2020)"},{"key":"26_CR10","doi-asserted-by":"publisher","unstructured":"Ferenc, R., T\u00f3th, Z., Lad\u00e1nyi, G., Siket, I., Gyim\u00f3thy, T.: A public unified bug dataset for java and its assessment regarding metrics and bug prediction. Softw. Qual. J. 28, 1447\u20131506 (2020). https:\/\/doi.org\/10.1007\/s11219-020-09515-0","DOI":"10.1007\/s11219-020-09515-0"},{"key":"26_CR11","doi-asserted-by":"publisher","unstructured":"Ferenc, R., Viszkok, T., Aladics, T., J\u00e1sz, J., Heged\u0171s, P.: Deep-water framework: the swiss army knife of humans working with machine learning models. SoftwareX 12, 100551 (2020). https:\/\/doi.org\/10.1016\/j.softx.2020.100551. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S2352711019303772","DOI":"10.1016\/j.softx.2020.100551"},{"key":"26_CR12","doi-asserted-by":"crossref","unstructured":"Gao, Y., Yang, C.: Software defect prediction based on adaboost algorithm under imbalance distribution. In: 2016 4th International Conference on Sensors, Mechatronics and Automation (ICSMA 2016). Atlantis Press (2016)","DOI":"10.2991\/icsma-16.2016.128"},{"key":"26_CR13","doi-asserted-by":"crossref","unstructured":"Hasanin, T., Khoshgoftaar, T.: The effects of random undersampling with simulated class imbalance for big data. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI), pp. 70\u201379. IEEE (2018)","DOI":"10.1109\/IRI.2018.00018"},{"issue":"5","key":"26_CR14","doi-asserted-by":"publisher","first-page":"561","DOI":"10.1007\/s10664-008-9079-3","volume":"13","author":"Y Jiang","year":"2008","unstructured":"Jiang, Y., Cukic, B., Ma, Y.: Techniques for evaluating fault prediction models. Empirical Softw. Eng. 13(5), 561\u2013595 (2008)","journal-title":"Empirical Softw. Eng."},{"issue":"1","key":"26_CR15","doi-asserted-by":"publisher","first-page":"10","DOI":"10.5815\/ijmecs.2020.01.05","volume":"12","author":"MZ Khan","year":"2020","unstructured":"Khan, M.Z.: Hybrid ensemble learning technique for software defect prediction. Int. J. Mod. Educ. Comput. Sci. 12(1), 10 (2020)","journal-title":"Int. J. Mod. Educ. Comput. Sci."},{"key":"26_CR16","doi-asserted-by":"publisher","unstructured":"Kumari, M., Misra, A., Misra, S., Fernandez Sanz, L., Damasevicius, R., Singh, V.: Quantitative quality evaluation of software products by considering summary and comments entropy of a reported bug. Entropy 21(1) (2019). https:\/\/doi.org\/10.3390\/e21010091. https:\/\/www.mdpi.com\/1099-4300\/21\/1\/91","DOI":"10.3390\/e21010091"},{"key":"26_CR17","doi-asserted-by":"publisher","unstructured":"Nevendra, M., Singh, P.: Software bug count prediction via AdaBoost.R-ET. In: 2019 IEEE 9th International Conference on Advanced Computing (IACC), pp. 7\u201312 (2019). https:\/\/doi.org\/10.1109\/IACC48062.2019.8971588","DOI":"10.1109\/IACC48062.2019.8971588"},{"issue":"01","key":"26_CR18","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1142\/S0219622011004282","volume":"10","author":"Y Peng","year":"2011","unstructured":"Peng, Y., Kou, G., Wang, G., Wu, W., Shi, Y.: Ensemble of software defect predictors: an AHP-based evaluation method. Int. J. Inf. Technol. Decis. Making 10(01), 187\u2013206 (2011)","journal-title":"Int. J. Inf. Technol. Decis. Making"},{"key":"26_CR19","doi-asserted-by":"crossref","unstructured":"Petri\u0107, J., Bowes, D., Hall, T., Christianson, B., Baddoo, N.: The jinx on the NASA software defect data sets. In: Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering, pp. 1\u20135 (2016)","DOI":"10.1145\/2915970.2916007"},{"key":"26_CR20","doi-asserted-by":"publisher","unstructured":"Polikar, R.: Ensemble learning. In: Zhang, C., Ma, Y. (eds) Ensemble machine learning, pp. 1\u201334. Springer, Boston (2012). https:\/\/doi.org\/10.1007\/978-1-4419-9326-7_1","DOI":"10.1007\/978-1-4419-9326-7_1"},{"key":"26_CR21","first-page":"8","volume":"2014","author":"J Ren","year":"2014","unstructured":"Ren, J., Qin, K., Ma, Y., Luo, G.: On software defect prediction using machine learning. J. Appl. Math. 2014, 8 (2014)","journal-title":"J. Appl. Math."},{"key":"26_CR22","unstructured":"Sayyad Shirabad, J., Menzies, T.: The PROMISE repository of software engineering databases. school of information technology and engineering, University of Ottawa, Canada (2005). http:\/\/promise.site.uottawa.ca\/SERepository"},{"key":"26_CR23","doi-asserted-by":"publisher","unstructured":"Schapire, R.E.: Explaining adaboost. In: Empirical inference, pp. 37\u201352. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-41136-6_5","DOI":"10.1007\/978-3-642-41136-6_5"},{"key":"26_CR24","doi-asserted-by":"crossref","unstructured":"Sharma, S., Kumar, S.: Analysis of ensemble models for aging related bug prediction in software systems. In: ICSOFT, pp. 290\u2013297 (2018)","DOI":"10.5220\/0006847702900297"},{"key":"26_CR25","doi-asserted-by":"publisher","unstructured":"Singh, V.B., Misra, S., Sharma, M.: Bug severity assessment in cross project context and identifying training candidates. J. Inf. Knowl. Manage. 16(01), 1750005 (2017). https:\/\/doi.org\/10.1142\/S0219649217500058","DOI":"10.1142\/S0219649217500058"},{"key":"26_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1007\/978-3-319-42089-9_44","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2016","author":"Z T\u00f3th","year":"2016","unstructured":"T\u00f3th, Z., Gyimesi, P., Ferenc, R.: A public bug database of GitHub projects and its application in bug prediction. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9789, pp. 625\u2013638. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-42089-9_44"},{"issue":"2","key":"26_CR27","doi-asserted-by":"publisher","first-page":"434","DOI":"10.1109\/TR.2013.2259203","volume":"62","author":"S Wang","year":"2013","unstructured":"Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2), 434\u2013443 (2013)","journal-title":"IEEE Trans. Reliab."},{"issue":"4","key":"26_CR28","first-page":"938","volume":"23","author":"F Yucalar","year":"2020","unstructured":"Yucalar, F., Ozcift, A., Borandag, E., Kilinc, D.: Multiple-classifiers in software quality engineering: combining predictors to improve software fault prediction ability. Eng. Sci. Technol. Int. J. 23(4), 938\u2013950 (2020)","journal-title":"Eng. Sci. Technol. Int. J."}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2021"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87007-2_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,10]],"date-time":"2021-09-10T13:08:23Z","timestamp":1631279303000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87007-2_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030870065","9783030870072"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-87007-2_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"11 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cagliari","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Customed version of CyberChair 4","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1588","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"466","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"29% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2,5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}