{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:06:15Z","timestamp":1726135575636},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030869786"},{"type":"electronic","value":"9783030869793"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-86979-3_42","type":"book-chapter","created":{"date-parts":[[2021,9,11]],"date-time":"2021-09-11T14:02:18Z","timestamp":1631368938000},"page":"601-612","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Earthquake Prediction Based on Combined Seismic and GPS Monitoring Data"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1123-6433","authenticated-orcid":false,"given":"V. G.","family":"Gitis","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7063-6176","authenticated-orcid":false,"given":"A. B.","family":"Derendyaev","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0614-3515","authenticated-orcid":false,"given":"K. N.","family":"Petrov","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,12]]},"reference":[{"issue":"11","key":"42_CR1","doi-asserted-by":"publisher","first-page":"1357","DOI":"10.3390\/rs11111357","volume":"11","author":"WD Barnhart","year":"2019","unstructured":"Barnhart, W.D., Hayes, G.P., Wald, D.J.: Global earthquake response with imaging geodesy: recent examples from the USGS NEIC. Remote Sens. 11(11), 1357 (2019)","journal-title":"Remote Sens."},{"key":"42_CR2","volume-title":"Pattern Recognition and Machine Learning","author":"CM Bishop","year":"2006","unstructured":"Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)"},{"key":"42_CR3","doi-asserted-by":"crossref","unstructured":"Blewitt, G., Hammond, W.C., Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science. Eos 99(10.1029) (2018)","DOI":"10.1029\/2018EO104623"},{"issue":"5","key":"42_CR4","doi-asserted-by":"publisher","first-page":"1025","DOI":"10.1007\/BF00876083","volume":"117","author":"I Dobrovolsky","year":"1979","unstructured":"Dobrovolsky, I., Zubkov, S., Miachkin, V.: Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 117(5), 1025\u20131044 (1979)","journal-title":"Pure Appl. Geophys."},{"key":"42_CR5","unstructured":"Garagash, I., Bondur, V., Gokhberg, M., Steblov, G.: Three-year experience of the fortnight forecast of seismicity in Southern California on the basis of geomechanical model and the seismic data. In: AGU Fall Meeting Abstracts, vol. 2011, pp. NH23A-1535 (2011)"},{"issue":"5306","key":"42_CR6","doi-asserted-by":"publisher","first-page":"1616","DOI":"10.1126\/science.275.5306.1616","volume":"275","author":"RJ Geller","year":"1997","unstructured":"Geller, R.J., Jackson, D.D., Kagan, Y.Y., Mulargia, F.: Earthquakes cannot be predicted. Science 275(5306), 1616 (1997)","journal-title":"Science"},{"key":"42_CR7","first-page":"482","volume":"8","author":"V Gitis","year":"2020","unstructured":"Gitis, V., Derendyaev, A.: The method of the minimum area of alarm for earthquake magnitude prediction. Front. Earth Sci. 8, 482 (2020)","journal-title":"Front. Earth Sci."},{"issue":"7","key":"42_CR8","doi-asserted-by":"publisher","first-page":"308","DOI":"10.3390\/geosciences9070308","volume":"9","author":"VG Gitis","year":"2019","unstructured":"Gitis, V.G., Derendyaev, A.B.: Machine learning methods for seismic hazards forecast. Geosciences 9(7), 308 (2019)","journal-title":"Geosciences"},{"issue":"4","key":"42_CR9","doi-asserted-by":"publisher","first-page":"378","DOI":"10.5800\/GT-2011-2-4-0051","volume":"2","author":"IL Gufeld","year":"2015","unstructured":"Gufeld, I.L., Matveeva, M.I., Novoselov, O.N.: Why we cannot predict strong earthquakes in the earth\u2019s crust. Geodyn. Tectonophys. 2(4), 378\u2013415 (2015)","journal-title":"Geodyn. Tectonophys."},{"issue":"1","key":"42_CR10","first-page":"71","volume":"1","author":"Z Guomin","year":"1992","unstructured":"Guomin, Z., Zhaocheng, Z.: The study of multidisciplinary earthquake prediction in China. J. Earthq. Predction Res. 1(1), 71\u201385 (1992)","journal-title":"J. Earthq. Predction Res."},{"key":"42_CR11","unstructured":"Kanamori, H.: The nature of seismicity patterns before large earthquakes (1981)"},{"key":"42_CR12","volume-title":"Nonlinear Dynamics of the Lithosphere and Earthquake Prediction","author":"V Keilis-Borok","year":"2013","unstructured":"Keilis-Borok, V., Soloviev, A.A.: Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer, Heidelberg (2013)"},{"key":"42_CR13","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1007\/978-3-642-17080-5_21","volume-title":"Artificial Intelligence and Cognitive Science","author":"SS Khan","year":"2010","unstructured":"Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification. In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS (LNAI), vol. 6206, pp. 188\u2013197. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-17080-5_21"},{"issue":"B12","key":"42_CR14","doi-asserted-by":"publisher","first-page":"12269","DOI":"10.1029\/JB091iB12p12269","volume":"91","author":"CY King","year":"1986","unstructured":"King, C.Y.: Gas geochemistry applied to earthquake prediction: an overview. J. Geophys. Res. Solid Earth 91(B12), 12269\u201312281 (1986)","journal-title":"J. Geophys. Res. Solid Earth"},{"issue":"1","key":"42_CR15","doi-asserted-by":"publisher","first-page":"10","DOI":"10.3103\/S0145875209010025","volume":"64","author":"N Koronovsky","year":"2009","unstructured":"Koronovsky, N., Naimark, A.: Earthquake prediction: is it a practicable scientific perspective or a challenge to science? Mosc. Univ. Geol. Bull. 64(1), 10\u201320 (2009)","journal-title":"Mosc. Univ. Geol. Bull."},{"key":"42_CR16","unstructured":"Kossobokov, V.: User manual for M8. In: Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (eds.) Algorithms for Earthquake Statistics and Prediction, vol. 6, pp. 167\u2013222 (1997)"},{"issue":"1","key":"42_CR17","first-page":"3","volume":"160","author":"SB Kotsiantis","year":"2007","unstructured":"Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160(1), 3\u201324 (2007)","journal-title":"Emerg. Artif. Intell. Appl. Comput. Eng."},{"key":"42_CR18","doi-asserted-by":"crossref","unstructured":"Lighthill, J.: A Critical Review of VAN: Earthquake Prediction from Seismic Electrical Signals. World Scientific (1996)","DOI":"10.1142\/3006"},{"key":"42_CR19","doi-asserted-by":"publisher","first-page":"1060","DOI":"10.1134\/S1028334X18080159","volume":"481","author":"L Lobkovsky","year":"2018","unstructured":"Lobkovsky, L., Vladimirova, I., Gabsatarov, Y.V., Steblov, G.: Seismotectonic deformations related to the 2011 Tohoku earthquake at different stages of the seismic cycle, based on satellite geodetic observations. Doklady Earth Sci. 481, 1060\u20131065 (2018)","journal-title":"Doklady Earth Sci."},{"issue":"6","key":"42_CR20","doi-asserted-by":"publisher","first-page":"1172","DOI":"10.1007\/BF00876213","volume":"117","author":"K Mogi","year":"1979","unstructured":"Mogi, K.: Two kinds of seismic gaps. Pure Appl. Geophys. 117(6), 1172\u20131186 (1979)","journal-title":"Pure Appl. Geophys."},{"issue":"2","key":"42_CR21","doi-asserted-by":"publisher","first-page":"021301","DOI":"10.1063\/1.1854197","volume":"76","author":"K Obara","year":"2005","unstructured":"Obara, K., Kasahara, K., Hori, S., Okada, Y.: A densely distributed high-sensitivity seismograph network in Japan: Hi-net by national research institute for earth science and disasterprevention. Rev. Sci. Instrum. 76(2), 021301 (2005)","journal-title":"Rev. Sci. Instrum."},{"key":"42_CR22","doi-asserted-by":"crossref","unstructured":"Okada, Y., et al.: Recent progress of seismic observation networks in Japan-Hi-net, F-net, K-net and KiK-net. Earth Planets Space 56(8), xv\u2013xxviii (2004)","DOI":"10.1186\/BF03353076"},{"issue":"1","key":"42_CR23","doi-asserted-by":"publisher","first-page":"110","DOI":"10.1785\/gssrl.78.1.110","volume":"78","author":"DA Rhoades","year":"2007","unstructured":"Rhoades, D.A.: Application of the EEPAS model to forecasting earthquakes of moderate magnitude in southern California. Seismol. Res. Lett. 78(1), 110\u2013115 (2007)","journal-title":"Seismol. Res. Lett."},{"issue":"4","key":"42_CR24","doi-asserted-by":"publisher","first-page":"2203","DOI":"10.1785\/0120120233","volume":"103","author":"DA Rhoades","year":"2013","unstructured":"Rhoades, D.A.: Mixture models for improved earthquake forecasting with short-to-medium time horizons. Bull. Seismol. Soc. Am. 103(4), 2203\u20132215 (2013)","journal-title":"Bull. Seismol. Soc. Am."},{"issue":"1","key":"42_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1880-5981-66-37","volume":"66","author":"PN Shebalin","year":"2014","unstructured":"Shebalin, P.N., Narteau, C., Zechar, J.D., Holschneider, M.: Combining earthquake forecasts using differential probability gains. Earth Planets Space 66(1), 1\u201314 (2014). https:\/\/doi.org\/10.1186\/1880-5981-66-37","journal-title":"Earth Planets Space"},{"key":"42_CR26","unstructured":"Sobolev, G.: Principles of earthquake prediction (1993)"},{"key":"42_CR27","unstructured":"Sobolev, G., Ponomarev, A.: Earthquake Physics and Precursors. Publishing House Nauka, Moscow (2003)"},{"issue":"4","key":"42_CR28","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1109\/2.53","volume":"21","author":"LA Zadeh","year":"1988","unstructured":"Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83\u201393 (1988)","journal-title":"Computer"},{"key":"42_CR29","unstructured":"Zavyalov, A.: Intermediate Term Earthquake Prediction. Nauka, Moscow (2006)"},{"issue":"3","key":"42_CR30","doi-asserted-by":"publisher","first-page":"641","DOI":"10.1007\/s11431-009-0063-y","volume":"52","author":"LY Zhang","year":"2009","unstructured":"Zhang, L.Y., Mao, X.B., Lu, A.H.: Experimental study of the mechanical properties of rocks at high temperature. Sci. China Ser. E 52(3), 641\u2013646 (2009)","journal-title":"Sci. China Ser. E"}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2021"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-86979-3_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,4]],"date-time":"2021-12-04T04:08:12Z","timestamp":1638590892000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-86979-3_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030869786","9783030869793"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-86979-3_42","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"12 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cagliari","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Customed version of CyberChair 4","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1588","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"466","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"29% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2,5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}