{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:02:25Z","timestamp":1735585345050},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030869564"},{"type":"electronic","value":"9783030869571"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-86957-1_15","type":"book-chapter","created":{"date-parts":[[2021,9,9]],"date-time":"2021-09-09T16:04:01Z","timestamp":1631203441000},"page":"216-231","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Handling Climate Change Using Counterfactuals: Using Counterfactuals in Data Augmentation to Predict Crop Growth in an Uncertain Climate Future"],"prefix":"10.1007","author":[{"given":"Mohammed","family":"Temraz","sequence":"first","affiliation":[]},{"given":"Eoin M.","family":"Kenny","sequence":"additional","affiliation":[]},{"given":"Elodie","family":"Ruelle","sequence":"additional","affiliation":[]},{"given":"Laurence","family":"Shalloo","sequence":"additional","affiliation":[]},{"given":"Barry","family":"Smyth","sequence":"additional","affiliation":[]},{"given":"Mark T.","family":"Keane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,10]]},"reference":[{"unstructured":"Rosenzweig, C., Iglesias, A., Yang, X.B., Epstein, P.R., Chivian, E.: Climate Change and U.S. Agriculture. centre for health and the global environment. Harvard Medical School, Boston, MA, USA (2000)","key":"15_CR1"},{"key":"15_CR2","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1007\/978-3-030-29249-2_12","volume-title":"Case-Based Reasoning Research and Development","author":"EM Kenny","year":"2019","unstructured":"Kenny, E.M., et al.: Predicting grass growth for sustainable dairy farming: a CBR system using bayesian case-exclusion and post-hoc, personalized explanation-by-example (XAI). In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 172\u2013187. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-29249-2_12"},{"unstructured":"Kenny, E.M., et al.: Bayesian case-exclusion for sustainable farming. In: IJCAI-20 (2020)","key":"15_CR3"},{"key":"15_CR4","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1007\/978-3-030-58342-2_11","volume-title":"Case-Based Reasoning Research and Development","author":"MT Keane","year":"2020","unstructured":"Keane, M.T., Smyth, B.: Good counterfactuals and where to find them: a case-based technique for generating counterfactuals for explainable AI (XAI). In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 163\u2013178. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58342-2_11"},{"unstructured":"EU Parliament Briefing on the EU dairy sector (2018). https:\/\/www.europarl.europa.eu\/RegData\/etudes\/BRIE\/2018\/630345\/EPRS_BRI(2018)630345_EN.pdf","key":"15_CR5"},{"key":"15_CR6","doi-asserted-by":"publisher","DOI":"10.1201\/9780429495465","volume-title":"Agroecology: The Science of Sustainable Agriculture","author":"MA Altieri","year":"2018","unstructured":"Altieri, M.A.: Agroecology: The Science of Sustainable Agriculture. CRC Press, Boca Raton (2018)"},{"unstructured":"Teagasc: The Dairy Carbon Navigator: Improving carbon efficiency on Irish dairy farms","key":"15_CR7"},{"key":"15_CR8","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1016\/j.eja.2018.06.010","volume":"99","author":"E Ruelle","year":"2018","unstructured":"Ruelle, E., Hennessy, D., Delaby, L.: Development of the Moorepark St Gilles grass growth model (MoSt GG model). Eur. J. Agron. 99, 80\u201391 (2018)","journal-title":"Eur. J. Agron."},{"key":"15_CR9","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1016\/j.compag.2017.01.029","volume":"136","author":"L Hanrahan","year":"2017","unstructured":"Hanrahan, L., et al.: PastureBase Ireland. Comput. Electron. Agric. 136, 193\u2013201 (2017)","journal-title":"Comput. Electron. Agric."},{"issue":"3","key":"15_CR10","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1080\/00750778.2013.865364","volume":"46","author":"C Hurtado-Uria","year":"2013","unstructured":"Hurtado-Uria, C., Hennessy, D., Shalloo, L., O\u2019Connor, D., Delaby, L.: Relationships between meteorological data and grass growth over time in the south of Ireland. Ir. Geogr. 46(3), 175\u2013201 (2013)","journal-title":"Ir. Geogr."},{"doi-asserted-by":"crossref","unstructured":"Karimi, A.H., Barthe, G., Sch\u00f6lkopf, B., Valera, I.: A survey of algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv preprint arXiv:2010.04050 (2020)","key":"15_CR11","DOI":"10.1145\/3442188.3445899"},{"unstructured":"Keane, M.T., Kenny, E.M., Delaney, E., Smyth, B.: If only we had better counterfactual explanations. In: IJCAI-21 (2021)","key":"15_CR12"},{"doi-asserted-by":"crossref","unstructured":"Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K., Dugan, C.: Explaining models. In: IUI-19, pp. 275\u2013285 (2019)","key":"15_CR13","DOI":"10.1145\/3301275.3302310"},{"issue":"3","key":"15_CR14","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1007\/s10844-008-0069-0","volume":"32","author":"C Nugent","year":"2009","unstructured":"Nugent, C., Doyle, D., Cunningham, P.: Gaining insight through case-based explanation. J. Intell. Inf. Syst. 32(3), 267\u2013295 (2009)","journal-title":"J. Intell. Inf. Syst."},{"key":"15_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"186","DOI":"10.1007\/3-540-44527-7_17","volume-title":"Advances in Case-Based Reasoning","author":"E McKenna","year":"2000","unstructured":"McKenna, E., Smyth, B.: Competence-guided case-base editing techniques. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 186\u2013197. Springer, Heidelberg (2000). https:\/\/doi.org\/10.1007\/3-540-44527-7_17"},{"issue":"3","key":"15_CR16","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1109\/21.278999","volume":"24","author":"BV Dasarathy","year":"1994","unstructured":"Dasarathy, B.V.: Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design. IEEE Trans. Syst. Man Cybern. 24(3), 511\u2013517 (1994)","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"15_CR17","first-page":"841","volume":"31","author":"S Wachter","year":"2018","unstructured":"Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. J. L. Tech. 31, 841 (2018)","journal-title":"Harv. J. L. Tech."},{"doi-asserted-by":"crossref","unstructured":"Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: FAT*20, pp. 607\u2013617 (2020)","key":"15_CR18","DOI":"10.1145\/3351095.3372850"},{"doi-asserted-by":"crossref","unstructured":"Schleich, M., Geng, Z., Zhang, Y., Suciu, D.: GeCo: quality counterfactual explanations in real time. arXiv preprint arXiv:2101.01292 (2021)","key":"15_CR19","DOI":"10.14778\/3461535.3461555"},{"unstructured":"Smyth, B., Keane, M.T.: A few good counterfactuals. arXiv preprint:2101.09056 (2021)","key":"15_CR20"},{"unstructured":"Smyth, B., Keane, M.T.: Remembering to forget. In: Proceedings of the 14th international Joint Conference on Artificial intelligence (IJCAI-95), pp. 377\u2013382 (1995)","key":"15_CR21"},{"unstructured":"Hasan, M.G.M.M.: Use case of counterfactual examples: data augmentation. In: Proceedings of Student Research and Creative Inquiry Day (2020)","key":"15_CR22"},{"unstructured":"Subbaswamy, A., Saria, S.: Counterfactual normalization: proactively addressing dataset shift using causal mechanisms. In: UAI-18, pp. 947\u2013957 (2018)","key":"15_CR23"},{"unstructured":"Zeng, X., Li, Y., Zhai, Y., Zhang, Y.: Counterfactual generator. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 7270\u20137280 (2020)","key":"15_CR24"},{"unstructured":"Pitis, S., Creager, E., Garg, A.: Counterfactual data augmentation using locally factored dynamics. In: Advances in Neural Information Processing Systems (2020)","key":"15_CR25"},{"unstructured":"F\u00f6rster, M., Klier, M., Kluge, K., Sigler, I.: Fostering human agency: a process for the design of user-centric XAI systems. In: ICIS-2020, paper 1963 (2020)","key":"15_CR26"},{"doi-asserted-by":"crossref","unstructured":"Temraz, M., Keane, M.T.: Solving the class imbalance problem using a counterfactual method for data augmentation. Under review (2021)","key":"15_CR27","DOI":"10.1016\/j.mlwa.2022.100375"}],"container-title":["Lecture Notes in Computer Science","Case-Based Reasoning Research and Development"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-86957-1_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,8]],"date-time":"2023-01-08T17:46:33Z","timestamp":1673199993000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-86957-1_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030869564","9783030869571"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-86957-1_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"10 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCBR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Case-Based Reasoning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Salamanca","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccbr2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccbr21.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"85","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}