{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:06:06Z","timestamp":1726135566940},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030868895"},{"type":"electronic","value":"9783030868901"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-86890-1_8","type":"book-chapter","created":{"date-parts":[[2021,9,17]],"date-time":"2021-09-17T00:49:44Z","timestamp":1631839784000},"page":"136-152","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["HIAWare: Speculate Handwriting on Mobile Devices with Built-In Sensors"],"prefix":"10.1007","author":[{"given":"Jing","family":"Chen","sequence":"first","affiliation":[]},{"given":"Peidong","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Kun","family":"He","sequence":"additional","affiliation":[]},{"given":"Cheng","family":"Zeng","sequence":"additional","affiliation":[]},{"given":"Ruiying","family":"Du","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,17]]},"reference":[{"key":"8_CR1","unstructured":"Android Developers: Motion sensors \u2014 android developers. https:\/\/developer.android.com\/guide\/topics\/sensors\/sensors_motion"},{"key":"8_CR2","doi-asserted-by":"crossref","unstructured":"Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side channels on smartphones. In: Proceedings of ACSAC, pp. 41\u201350 (2012)","DOI":"10.1145\/2420950.2420957"},{"key":"8_CR3","unstructured":"Cai, L., Chen, H.: Touchlogger: inferring keystrokes on touch screen from smartphone motion. In: Proceedings of HotSec (2011)"},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"Chen, D., et al.: Magleak: a learning-based side-channel attack for password recognition with multiple sensors in IIoT environment. IEEE Trans. Ind. Inform. (2020)","DOI":"10.1109\/TII.2020.3045161"},{"key":"8_CR5","doi-asserted-by":"crossref","unstructured":"Chen, J., Fang, Y., He, K., Du, R.: Charge-depleting of the batteries makes smartphones recognizable. In: Proceedings of ICPADS, pp. 33\u201340 (2017)","DOI":"10.1109\/ICPADS.2017.00016"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Chen, Y., Jin, X., Sun, J., Zhang, R., Zhang, Y.: POWERFUL: mobile app fingerprinting via power analysis. In: Proceedings of INFOCOM, pp. 1\u20139 (2017)","DOI":"10.1109\/INFOCOM.2017.8057232"},{"issue":"6","key":"8_CR7","doi-asserted-by":"publisher","first-page":"3070","DOI":"10.1109\/TII.2017.2712746","volume":"13","author":"Z Chen","year":"2017","unstructured":"Chen, Z., Zhu, Q., Soh, Y.C., Zhang, L.: Robust human activity recognition using smartphone sensors via CT-PCA and Misc SVM. IEEE Trans. Ind. Inform. 13(6), 3070\u20133080 (2017)","journal-title":"IEEE Trans. Ind. Inform."},{"key":"8_CR8","doi-asserted-by":"crossref","unstructured":"Du, H., Li, P., Zhou, H., Gong, W., Luo, G., Yang, P.: WordRecorder: accurate acoustic-based handwriting recognition using deep learning. In: Proceedings of INFOCOM, pp. 1448\u20131456 (2018)","DOI":"10.1109\/INFOCOM.2018.8486285"},{"key":"8_CR9","unstructured":"Hafez, A.: Information inference based on barometer sensor in android devices. dissertation, University of Alberta (2020). https:\/\/era.library.ualberta.ca\/items\/15d8d051-45ab-4b1f-ba8a-005688e92f05"},{"key":"8_CR10","doi-asserted-by":"publisher","unstructured":"Javed, A.R., Beg, M.O., Asim, M., Baker, T., Al-Bayatti, A.H.: AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes. J. Ambient Intell. Humanized Comput. 1\u201314 (2020). https:\/\/doi.org\/10.1007\/s12652-020-01770-0","DOI":"10.1007\/s12652-020-01770-0"},{"issue":"3","key":"8_CR11","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1007\/s10207-017-0369-x","volume":"17","author":"M Mehrnezhad","year":"2017","unstructured":"Mehrnezhad, M., Toreini, E., Shahandashti, S.F., Hao, F.: Stealing PINs via mobile sensors: actual risk versus user perception. Int. J. Inf. Secur. 17(3), 291\u2013313 (2017). https:\/\/doi.org\/10.1007\/s10207-017-0369-x","journal-title":"Int. J. Inf. Secur."},{"key":"8_CR12","first-page":"23","volume":"26","author":"M Mehrnezhad","year":"2016","unstructured":"Mehrnezhad, M., Toreini, E., Shahandashti, S.F., Hao, F.: Touchsignatures: identification of user touch actions and pins based on mobile sensor data via javascript. J. Inf. Sec. Appl. 26, 23\u201338 (2016)","journal-title":"J. Inf. Sec. Appl."},{"key":"8_CR13","doi-asserted-by":"crossref","unstructured":"Ping, D., Sun, X., Mao, B.: TextLogger: inferring longer inputs on touch screen using motion sensors. In: Proceedings of WiSec, pp. 24:1\u201324:12 (2015)","DOI":"10.1145\/2766498.2766511"},{"key":"8_CR14","unstructured":"Qimai: Apple store app downloads analysis (2019). https:\/\/www.qimai.cn\/"},{"key":"8_CR15","doi-asserted-by":"crossref","unstructured":"Qin, Y., Yue, C.: Website fingerprinting by power estimation based side-channel attacks on Android 7. In: Proceedings of TrustCom, pp. 1030\u20131039 (2018)","DOI":"10.1109\/TrustCom\/BigDataSE.2018.00145"},{"issue":"12","key":"8_CR16","doi-asserted-by":"publisher","first-page":"4354","DOI":"10.3390\/s18124354","volume":"18","author":"KGM Quispe","year":"2018","unstructured":"Quispe, K.G.M., Lima, W.S., Batista, D.M., Souto, E.: MBOSS: a symbolic representation of human activity recognition using mobile sensors. Sensors 18(12), 4354 (2018)","journal-title":"Sensors"},{"key":"8_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1007\/978-3-030-50309-3_43","volume-title":"HCI for Cybersecurity, Privacy and Trust","author":"E Schmitt","year":"2020","unstructured":"Schmitt, E., Voigt-Antons, J.-N.: Predicting tap locations on touch screens in the field using accelerometer and gyroscope sensor readings. In: Moallem, A. (ed.) HCII 2020. LNCS, vol. 12210, pp. 637\u2013651. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-50309-3_43"},{"issue":"1","key":"8_CR18","doi-asserted-by":"publisher","first-page":"465","DOI":"10.1109\/COMST.2017.2779824","volume":"20","author":"R Spreitzer","year":"2018","unstructured":"Spreitzer, R., Moonsamy, V., Korak, T., Mangard, S.: Systematic classification of side-channel attacks: a case study for mobile devices. IEEE Commun. Surv. Tutorials 20(1), 465\u2013488 (2018)","journal-title":"IEEE Commun. Surv. Tutorials"},{"key":"8_CR19","doi-asserted-by":"crossref","unstructured":"Spreitzer, R., Kirchengast, F., Gruss, D., Mangard, S.: ProcHarvester: fully automated analysis of procfs side-channel leaks on Android. In: Proceedings of ASIACCS, pp. 749\u2013763 (2018)","DOI":"10.1145\/3196494.3196510"},{"key":"8_CR20","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.patrec.2018.02.010","volume":"119","author":"J Wang","year":"2019","unstructured":"Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Patt. Recogn. Lett. 119, 3\u201311 (2019)","journal-title":"Patt. Recogn. Lett."},{"key":"8_CR21","doi-asserted-by":"crossref","unstructured":"Xu, Z., Bai, K., Zhu, S.: Taplogger: inferring user inputs on smartphone touchscreens using on-board motion sensors. In: Proceedings of WiSec, pp. 113\u2013124 (2012)","DOI":"10.1145\/2185448.2185465"},{"key":"8_CR22","doi-asserted-by":"crossref","unstructured":"Yu, T., Jin, H., Nahrstedt, K.: Writinghacker: audio based eavesdropping of handwriting via mobile devices. In: Proceedings of UbiComp, pp. 463\u2013473 (2016)","DOI":"10.1145\/2971648.2971681"},{"issue":"1","key":"8_CR23","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1109\/TIFS.2018.2843353","volume":"14","author":"R Zhao","year":"2019","unstructured":"Zhao, R., Yue, C., Han, Q.: Sensor-based mobile web cross-site input inference attacks and defenses. IEEE Trans. Inf. Forensics Secur. 14(1), 75\u201389 (2019)","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"8_CR24","doi-asserted-by":"crossref","unstructured":"Zhou, M., Wang, Q., Yang, J., Li, Q., Xiao, F., Wang, Z., Chen, X.: Patternlistener: cracking android pattern lock using acoustic signals. In: Proceedings of CCS, pp. 1775\u20131787 (2018)","DOI":"10.1145\/3243734.3243777"}],"container-title":["Lecture Notes in Computer Science","Information and Communications Security"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-86890-1_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,17]],"date-time":"2021-09-17T01:00:44Z","timestamp":1631840444000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-86890-1_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030868895","9783030868901"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-86890-1_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"17 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICICS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Information and Communications Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chongqing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icics2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.icics.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"182","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"49","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}