{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:37:08Z","timestamp":1726137428013},"publisher-location":"Cham","reference-count":33,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030868543"},{"type":"electronic","value":"9783030868550"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-86855-0_15","type":"book-chapter","created":{"date-parts":[[2021,10,4]],"date-time":"2021-10-04T22:58:16Z","timestamp":1633388296000},"page":"215-231","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Relying on Discourse Trees to Extract Medical Ontologies from Text"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0670-8520","authenticated-orcid":false,"given":"Boris","family":"Galitsky","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5484-372X","authenticated-orcid":false,"given":"Dmitry","family":"Ilvovsky","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8358-9647","authenticated-orcid":false,"given":"Elizaveta","family":"Goncharova","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,10,4]]},"reference":[{"key":"15_CR1","doi-asserted-by":"crossref","unstructured":"Amer, E., Fouad, K.M.: Keyphrase extraction methodology from short abstracts of medical documents. In: 2016 8th Cairo International Biomedical Engineering Conference, CIBEC 2016 (2016)","DOI":"10.1109\/CIBEC.2016.7836091"},{"key":"15_CR2","doi-asserted-by":"crossref","unstructured":"Arbabi, A., Adams, D.R., Fidler, S., Brudno, M.: Identifying clinical terms in medical text using ontology-guided machine learning. JMIR Med. Inform. 7, e12596 (2019)","DOI":"10.2196\/12596"},{"key":"15_CR3","unstructured":"Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of AMIA Symposium (2001)"},{"key":"15_CR4","unstructured":"Banko, M., Cafarella, M., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 2670\u20132676 (2007)"},{"key":"15_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1162\/coli.2008.34.1.1","volume":"34","author":"R Barzilay","year":"2008","unstructured":"Barzilay, R., Lapata, M.: Modeling local coherence: an entity-based approach. Comput. Linguis. 34, 1\u201334 (2008)","journal-title":"Comput. Linguis."},{"key":"15_CR6","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"196","DOI":"10.1007\/978-3-642-38326-7_30","volume-title":"Artificial Intelligence in Medicine","author":"A Ben Abacha","year":"2013","unstructured":"Ben Abacha, A., Da Silveira, M., Pruski, C.: Medical ontology validation through question answering. In: Peek, N., Mar\u00edn Morales, R., Peleg, M. (eds.) AIME 2013. LNCS (LNAI), vol. 7885, pp. 196\u2013205. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-38326-7_30"},{"key":"15_CR7","doi-asserted-by":"crossref","unstructured":"Berant, J., et al.: Modeling biological processes for reading comprehension. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1499\u20131510. Association for Computational Linguistics, Doha, Qatar (2014)","DOI":"10.3115\/v1\/D14-1159"},{"key":"15_CR8","doi-asserted-by":"crossref","unstructured":"Chen, D., Manning, C.: A fast and accurate dependency parser using neural networks. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 740\u2013750. Association for Computational Linguistics, Doha, Qatar (2014)","DOI":"10.3115\/v1\/D14-1082"},{"key":"15_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1007\/978-3-030-72610-2_8","volume-title":"Analysis of Images, Social Networks and Texts","author":"E Chistova","year":"2021","unstructured":"Chistova, E., et al.: RST discourse parser for Russian: an experimental study of deep learning models. In: van der Aalst, W.M.P., et al. (eds.) AIST 2020. LNCS, vol. 12602, pp. 105\u2013119. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-72610-2_8"},{"key":"15_CR10","unstructured":"Corro, L., Gemulla, R.: ClausIE: clause-based open information extraction. In: WWW 2013 - Proceedings of the 22nd International Conference on World Wide Web, pp. 355\u2013366 (2013)"},{"key":"15_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.engappai.2016.11.001","volume":"58","author":"B Galitsky","year":"2017","unstructured":"Galitsky, B.: Improving relevance in a content pipeline via syntactic generalization. Eng. Appl. Artif. Intell. 58, 1\u201326 (2017)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"15_CR12","unstructured":"Galitsky, B., Ilvovsky, D., Kuznetsov, S.O.: Text classification into abstract classes based on discourse structure. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, pp. 200\u2013207. Incoma Ltd., Shoumen, Bulgaria, Hissar, Bulgaria (2015)"},{"key":"15_CR13","first-page":"637","volume":"30","author":"B Galitsky","year":"2018","unstructured":"Galitsky, B., Ilvovsky, D., Kuznetsov, S.O.: Detecting logical argumentation in text via communicative discourse tree. J. Exp. Theor. Artif. Intell. 30, 637\u2013663 (2018)","journal-title":"J. Exp. Theor. Artif. Intell."},{"key":"15_CR14","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"104","DOI":"10.1007\/978-3-642-22688-5_8","volume-title":"Conceptual Structures for Discovering Knowledge","author":"BA Galitsky","year":"2011","unstructured":"Galitsky, B.A., Dobrocsi, G., de la Rosa, J.L., Kuznetsov, S.O.: Using generalization of syntactic parse trees for taxonomy capture on the web. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp. 104\u2013117. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-22688-5_8"},{"key":"15_CR15","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1093\/bib\/bbv087","volume":"17","author":"G Gonzalez","year":"2015","unstructured":"Gonzalez, G., Tahsin, T., Goodale, B., Greene, A., Greene, C.: Recent advances and emerging applications in text and data mining for biomedical discovery. Briefings Bioinform. 17, 33\u201342 (2015)","journal-title":"Briefings Bioinform."},{"key":"15_CR16","doi-asserted-by":"crossref","unstructured":"Ji, B., et al.: A hybrid approach for named entity recognition in Chinese electronic medical record. BMC Med. Inform. Decis. Making 19, 149\u2013158 (2019)","DOI":"10.1186\/s12911-019-0767-2"},{"key":"15_CR17","doi-asserted-by":"crossref","unstructured":"Ji, Y., Eisenstein, J.: Representation learning for text-level discourse parsing. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13\u201324. Association for Computational Linguistics, Baltimore, Maryland (2014)","DOI":"10.3115\/v1\/P14-1002"},{"key":"15_CR18","unstructured":"Jin, Q., Dhingra, B., Liu, Z., Cohen, W.W., Lu, X.: PubMedQA: a dataset for biomedical research question answering. CoRR abs\/1909.06146 (2019). http:\/\/arxiv.org\/abs\/1909.06146"},{"key":"15_CR19","unstructured":"Joty, S., Carenini, G., Ng, R., Mehdad, Y.: Combining intra- and multi-sentential rhetorical parsing for document-level discourse analysis. In: ACL 2013\u201351st Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, vol. 1 (2013)"},{"key":"15_CR20","doi-asserted-by":"crossref","unstructured":"Jusoh, S., Awajan, A., Obeid, N.: The use of ontology in clinical information extraction. J. Phys. Conf. Series 1529, 052083 (2020)","DOI":"10.1088\/1742-6596\/1529\/5\/052083"},{"key":"15_CR21","doi-asserted-by":"crossref","unstructured":"Li, J., Li, R., Hovy, E.: Recursive deep models for discourse parsing. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2061\u20132069. Association for Computational Linguistics, Doha, Qatar, October 2014","DOI":"10.3115\/v1\/D14-1220"},{"key":"15_CR22","first-page":"3337","volume":"2011","author":"J Liu","year":"2011","unstructured":"Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. CVPR 2011, 3337\u20133344 (2011)","journal-title":"CVPR"},{"key":"15_CR23","first-page":"243","volume":"8","author":"W Mann","year":"1988","unstructured":"Mann, W., Thompson, S.: Rethorical structure theory: toward a functional theory of text organization. Text Talk 8, 243\u2013281 (1988)","journal-title":"Text Talk"},{"key":"15_CR24","doi-asserted-by":"crossref","unstructured":"Nejadgholi, I., Fraser, K.C., De Bruijn, B., Li, M., LaPlante, A., El Abidine, K.Z.: Recognizing UMLS semantic types with deep learning. In: Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019), pp. 157\u2013167. Association for Computational Linguistics, Hong Kong (2019)","DOI":"10.18653\/v1\/D19-6219"},{"key":"15_CR25","doi-asserted-by":"crossref","unstructured":"Pampari, A., Raghavan, P., Liang, J., Peng, J.: emrQA: a large corpus for question answering on electronic medical records. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2357\u20132368. Association for Computational Linguistics, Brussels, Belgium (2018)","DOI":"10.18653\/v1\/D18-1258"},{"key":"15_CR26","unstructured":"Pisarevskaya, D., et al.: Towards building a discourse-annotated corpus of Russian. In: Kompjuternaja Lingvistika i Intellektualnye Tehnologii, vol. 1 (2017)"},{"key":"15_CR27","unstructured":"Khin, N.P.P., Lynn, K.T.: Medical concept extraction: a comparison of statistical and semantic methods. In: 2017 18th IEEE\/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel\/Distributed Computing (SNPD), pp. 35\u201338 (2017)"},{"key":"15_CR28","unstructured":"Richardson, M., Burges, C., Renshaw, E.: MCTest: a challenge dataset for the open-domain machine comprehension of text. In: EMNLP 2013\u20132013 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, pp. 193\u2013203 (01 2013)"},{"key":"15_CR29","doi-asserted-by":"crossref","unstructured":"Sarkar, K.: A hybrid approach to extract keyphrases from medical documents. Int. J. Comput. Appl. 63 (2013)","DOI":"10.5120\/10565-5528"},{"key":"15_CR30","unstructured":"Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP 2013\u20132013 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference (2013)"},{"key":"15_CR31","doi-asserted-by":"publisher","unstructured":"Song, M., Tanapaisankit, P.: Biokeyspotter: An unsupervised keyphrase extraction technique in the biomedical full-text collection. Intell. Syst. Ref. Libr. 25 (2012). https:\/\/doi.org\/10.1007\/978-3-642-23151-3_3","DOI":"10.1007\/978-3-642-23151-3_3"},{"key":"15_CR32","doi-asserted-by":"crossref","unstructured":"Tsatsaronis, G., et al.: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinform. 16, 138 (2015)","DOI":"10.1186\/s12859-015-0564-6"},{"key":"15_CR33","doi-asserted-by":"crossref","unstructured":"Wang, X., Yoshida, Y., Hirao, T., Sudoh, K., Nagata, M.: Summarization based on task-oriented discourse parsing. IEEE\/ACM Trans. Audio Speech Lang. Process. 23, 1358\u20131367 (2015)","DOI":"10.1109\/TASLP.2015.2432573"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-86855-0_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,10,4]],"date-time":"2021-10-04T23:05:37Z","timestamp":1633388737000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-86855-0_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030868543","9783030868550"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-86855-0_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"4 October 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"RCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Russian Conference on Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Taganrog","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Russia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 October 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"rcai2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2021.rncai.ru\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"80","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"19","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2,9","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}