{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:57:22Z","timestamp":1726408642909},"publisher-location":"Cham","reference-count":40,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030865481"},{"type":"electronic","value":"9783030865498"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-86549-8_7","type":"book-chapter","created":{"date-parts":[[2021,9,4]],"date-time":"2021-09-04T06:05:57Z","timestamp":1630735557000},"page":"99-114","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":37,"title":["LGPMA: Complicated Table Structure Recognition with Local and Global Pyramid Mask Alignment"],"prefix":"10.1007","author":[{"given":"Liang","family":"Qiao","sequence":"first","affiliation":[]},{"given":"Zaisheng","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhanzhan","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shiliang","family":"Pu","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Niu","sequence":"additional","affiliation":[]},{"given":"Wenqi","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Wenming","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Fei","family":"Wu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,2]]},"reference":[{"issue":"9","key":"7_CR1","doi-asserted-by":"publisher","first-page":"575","DOI":"10.1145\/362342.362367","volume":"16","author":"C Bron","year":"1973","unstructured":"Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575\u2013576 (1973)","journal-title":"Commun. ACM"},{"key":"7_CR2","unstructured":"Chi, Z., Huang, H., Xu, H., Yu, H., Yin, W., Mao, X.: Complicated table structure recognition. CoRR abs\/1908.04729 (2019)"},{"key":"7_CR3","doi-asserted-by":"crossref","unstructured":"Doush, I.A., Pontelli, E.: Detecting and recognizing tables in spreadsheets. In: IAPR, pp. 471\u2013478 (2010)","DOI":"10.1145\/1815330.1815391"},{"key":"7_CR4","doi-asserted-by":"crossref","unstructured":"Gao, L., et al.: ICDAR 2019 competition on table detection and recognition (ctdar). In: ICDAR, pp. 1510\u20131515 (2019)","DOI":"10.1109\/ICDAR.2019.00243"},{"key":"7_CR5","doi-asserted-by":"crossref","unstructured":"G\u00f6bel, M.C., Hassan, T., Oro, E., Orsi, G.: ICDAR 2013 table competition. In: ICDAR, pp. 1449\u20131453 (2013)","DOI":"10.1109\/ICDAR.2013.292"},{"key":"7_CR6","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.B.: Mask R-CNN. In: ICCV pp. 2980\u20132988 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"7_CR7","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"7_CR8","unstructured":"Itonori, K.: Table structure recognition based on textblock arrangement and ruled line position. In: ICDAR, pp. 765\u2013768 (1993)"},{"key":"7_CR9","doi-asserted-by":"crossref","unstructured":"Khan, S.A., Khalid, S.M.D., Shahzad, M.A., Shafait, F.: Table structure extraction with bi-directional gated recurrent unit networks. In: ICDAR, pp. 1366\u20131371 (2019)","DOI":"10.1109\/ICDAR.2019.00220"},{"key":"7_CR10","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1117\/12.304642","volume":"3305","author":"T Kieninger","year":"1998","unstructured":"Kieninger, T.: Table structure recognition based on robust block segmentation. Document Recogn. 3305, 22\u201332 (1998)","journal-title":"Document Recogn."},{"key":"7_CR11","doi-asserted-by":"crossref","unstructured":"Koci, E., Thiele, M., Lehner, W., Romero, O.: Table recognition in spreadsheets via a graph representation. In: IAPR, pp. 139\u2013144 (2018)","DOI":"10.1109\/DAS.2018.48"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Lee, C., Osindero, S.: Recursive recurrent nets with attention modeling for OCR in the wild. In: CVPR, pp. 2231\u20132239 (2016)","DOI":"10.1109\/CVPR.2016.245"},{"key":"7_CR13","unstructured":"Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., Li, Z.: Tablebank: table benchmark for image-based table detection and recognition. In: LREC, pp. 1918\u20131925 (2020)"},{"key":"7_CR14","doi-asserted-by":"crossref","unstructured":"Li, Y., Huang, Z., Yan, J., Zhou, Y., Ye, F., Liu, X.: GFTE: graph-based financial table extraction. In: ICPR Workshops, vol. 12662, pp. 644\u2013658 (2020)","DOI":"10.1007\/978-3-030-68790-8_50"},{"key":"7_CR15","doi-asserted-by":"crossref","unstructured":"Lin, T., Doll\u00e1r, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR, pp. 936\u2013944 (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"7_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"key":"7_CR17","unstructured":"Liu, J., Liu, X., Sheng, J., Liang, D., Li, X., Liu, Q.: Pyramid mask text detector. CoRR abs\/1903.11800 (2019)"},{"key":"7_CR18","doi-asserted-by":"crossref","unstructured":"Liu, Y., Bai, K., Mitra, P., Giles, C.L.: Improving the table boundary detection in pdfs by fixing the sequence error of the sparse lines. In: ICDAR, pp. 1006\u20131010 (2009)","DOI":"10.1109\/ICDAR.2009.138"},{"key":"7_CR19","doi-asserted-by":"crossref","unstructured":"Liu, Y., Mitra, P., Giles, C.L.: Identifying table boundaries in digital documents via sparse line detection. In: CIKM, pp. 1311\u20131320 (2008)","DOI":"10.1145\/1458082.1458255"},{"key":"7_CR20","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565\u2013571 (2016)","DOI":"10.1109\/3DV.2016.79"},{"key":"7_CR21","doi-asserted-by":"crossref","unstructured":"Nishida, K., Sadamitsu, K., Higashinaka, R., Matsuo, Y.: Understanding the semantic structures of tables with a hybrid deep neural network architecture. In: AAAI, pp. 168\u2013174 (2017)","DOI":"10.1609\/aaai.v31i1.10484"},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Paliwal, S.S., D, V., Rahul, R., Sharma, M., Vig, L.: Tablenet: deep learning model for end-to-end table detection and tabular data extraction from scanned document images. In: ICDAR, pp. 128\u2013133 (2019)","DOI":"10.1109\/ICDAR.2019.00029"},{"key":"7_CR23","doi-asserted-by":"crossref","unstructured":"Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: Cascadetabnet: an approach for end to end table detection and structure recognition from image-based documents. In: CVPR Workshops, pp. 2439\u20132447 (2020)","DOI":"10.1109\/CVPRW50498.2020.00294"},{"key":"7_CR24","doi-asserted-by":"crossref","unstructured":"Qasim, S.R., Mahmood, H., Shafait, F.: Rethinking table recognition using graph neural networks. In: ICDAR, pp. 142\u2013147 (2019)","DOI":"10.1109\/ICDAR.2019.00031"},{"key":"7_CR25","doi-asserted-by":"crossref","unstructured":"Qiao, L., et al.: Text perceptron: towards end-to-end arbitrary-shaped text spotting. In: AAAI, pp. 11899\u201311907 (2020)","DOI":"10.1609\/aaai.v34i07.6864"},{"key":"7_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"70","DOI":"10.1007\/978-3-030-58604-1_5","volume-title":"Computer Vision \u2013 ECCV 2020","author":"S Raja","year":"2020","unstructured":"Raja, S., Mondal, A., Jawahar, C.V.: Table structure recognition using top-down and bottom-up cues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 70\u201386. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58604-1_5"},{"key":"7_CR27","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779\u2013788 (2016)","DOI":"10.1109\/CVPR.2016.91"},{"key":"7_CR28","unstructured":"Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, pp. 91\u201399 (2015)"},{"issue":"1","key":"7_CR29","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1109\/TNN.2008.2005605","volume":"20","author":"F Scarselli","year":"2009","unstructured":"Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61\u201380 (2009)","journal-title":"IEEE Trans. Neural Networks"},{"key":"7_CR30","doi-asserted-by":"crossref","unstructured":"Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt: deep learning for detection and structure recognition of tables in document images. In: ICDAR, pp. 1162\u20131167 (2017)","DOI":"10.1109\/ICDAR.2017.192"},{"key":"7_CR31","doi-asserted-by":"crossref","unstructured":"Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.: Deeptabstr: deep learning based table structure recognition. In: ICDAR, pp. 1403\u20131409 (2019)","DOI":"10.1109\/ICDAR.2019.00226"},{"key":"7_CR32","doi-asserted-by":"crossref","unstructured":"Siddiqui, S.A., Khan, P.I., Dengel, A., Ahmed, S.: Rethinking semantic segmentation for table structure recognition in documents. In: ICDAR, pp. 1397\u20131402 (2019)","DOI":"10.1109\/ICDAR.2019.00225"},{"key":"7_CR33","doi-asserted-by":"crossref","unstructured":"Tensmeyer, C., Morariu, V.I., Price, B.L., Cohen, S., Martinez, T.R.: Deep splitting and merging for table structure decomposition. In: ICDAR, pp. 114\u2013121 (2019)","DOI":"10.1109\/ICDAR.2019.00027"},{"issue":"7","key":"7_CR34","doi-asserted-by":"publisher","first-page":"1479","DOI":"10.1016\/j.patcog.2004.01.012","volume":"37","author":"Y Wang","year":"2004","unstructured":"Wang, Y., Phillips, I.T., Haralick, R.M.: Table structure understanding and its performance evaluation. Pattern Recognit. 37(7), 1479\u20131497 (2004)","journal-title":"Pattern Recognit."},{"key":"7_CR35","doi-asserted-by":"crossref","unstructured":"Xie, E., Zang, Y., Shao, S., Yu, G., Yao, C., Li, G.: Scene text detection with supervised pyramid context network. In: AAAI, pp. 9038\u20139045 (2019)","DOI":"10.1609\/aaai.v33i01.33019038"},{"key":"7_CR36","doi-asserted-by":"crossref","unstructured":"Xue, W., Li, Q., Tao, D.: Res2tim: reconstruct syntactic structures from table images. In: ICDAR, pp. 749\u2013755 (2019)","DOI":"10.1109\/ICDAR.2019.00125"},{"issue":"1","key":"7_CR37","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10032-004-0120-9","volume":"7","author":"R Zanibbi","year":"2004","unstructured":"Zanibbi, R., Blostein, D., Cordy, J.R.: A survey of table recognition. Int. J. Document Anal. Recognit. 7(1), 1\u201316 (2004)","journal-title":"Int. J. Document Anal. Recognit."},{"key":"7_CR38","doi-asserted-by":"crossref","unstructured":"Zheng, X., Burdick, D., Popa, L., Wang, N.X.R.: Global table extractor (GTE): A framework for joint table identification and cell structure recognition using visual context. CoRR abs\/2005.00589 (2020)","DOI":"10.1109\/WACV48630.2021.00074"},{"key":"7_CR39","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"564","DOI":"10.1007\/978-3-030-58589-1_34","volume-title":"Computer Vision \u2013 ECCV 2020","author":"X Zhong","year":"2020","unstructured":"Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 564\u2013580. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58589-1_34"},{"key":"7_CR40","doi-asserted-by":"crossref","unstructured":"Zhou, X., et al.: EAST: an efficient and accurate scene text detector. In: CVPR, pp. 2642\u20132651 (2017)","DOI":"10.1109\/CVPR.2017.283"}],"container-title":["Lecture Notes in Computer Science","Document Analysis and Recognition \u2013 ICDAR 2021"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-86549-8_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T19:43:21Z","timestamp":1710359001000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-86549-8_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030865481","9783030865498"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-86549-8_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"2 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICDAR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Document Analysis and Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lausanne","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Switzerland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icdar2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iapr.org\/icdar2021","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"340","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"182","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"54% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.9","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4.9","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Additionally, 13 competition reports are included.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}