{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T09:56:18Z","timestamp":1726134978747},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030863821"},{"type":"electronic","value":"9783030863838"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-86383-8_10","type":"book-chapter","created":{"date-parts":[[2021,9,10]],"date-time":"2021-09-10T08:02:49Z","timestamp":1631260969000},"page":"126-137","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Evaluate Pseudo Labeling and CNN for Multi-variate Time Series Classification in Low-Data Regimes"],"prefix":"10.1007","author":[{"given":"Dino","family":"Ienco","sequence":"first","affiliation":[]},{"given":"Davi","family":"Pereira-Santos","sequence":"additional","affiliation":[]},{"given":"Andr\u00e9 C. P. L. F.","family":"de Carvalho","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,7]]},"reference":[{"key":"10_CR1","unstructured":"Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108\u2013122 (2013)"},{"issue":"2","key":"10_CR2","doi-asserted-by":"publisher","first-page":"493","DOI":"10.1007\/s10115-017-1090-9","volume":"55","author":"MG Castellanos","year":"2018","unstructured":"Castellanos, M.G., Bergmeir, C., Triguero, I., Rodr\u00edguez, Y., Ben\u00edtez, J.M.: Self-labeling techniques for semi-supervised time series classification: an empirical study. Knowl. Inf. Syst. 55(2), 493\u2013528 (2018)","journal-title":"Knowl. Inf. Syst."},{"key":"10_CR3","doi-asserted-by":"crossref","unstructured":"Chen, Y., Hu, B., Keogh, E.J., Batista, G.E.A.P.A.: DTW-D: time series semi-supervised learning from a single example. In: KDD, pp. 383\u2013391. ACM (2013)","DOI":"10.1145\/2487575.2487633"},{"issue":"4","key":"10_CR4","doi-asserted-by":"publisher","first-page":"917","DOI":"10.1007\/s10618-019-00619-1","volume":"33","author":"HI Fawaz","year":"2019","unstructured":"Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.: Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33(4), 917\u2013963 (2019)","journal-title":"Data Min. Knowl. Discov."},{"issue":"3","key":"10_CR5","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1109\/TPAMI.2012.121","volume":"35","author":"J Frank","year":"2013","unstructured":"Frank, J., Mannor, S., Pineau, J., Precup, D.: Time series analysis using geometric template matching. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 740\u2013754 (2013)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10_CR6","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1109\/LGRS.2019.2917788","volume":"17","author":"YJE Gbodjo","year":"2020","unstructured":"Gbodjo, Y.J.E., Ienco, D., Leroux, L.: Toward spatio-spectral analysis of sentinel-2 time series data for land cover mapping. IEEE Geosci. Remote Sens. Lett. 17(2), 307\u2013311 (2020)","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"2","key":"10_CR7","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1007\/s10115-015-0881-0","volume":"48","author":"Z Geler","year":"2016","unstructured":"Geler, Z., Kurbalija, V., Radovanovic, M., Ivanovic, M.: Comparison of different weighting schemes for the KNN classifier on time-series data. Knowl. Inf. Syst. 48(2), 331\u2013378 (2016)","journal-title":"Knowl. Inf. Syst."},{"key":"10_CR8","first-page":"2579","volume":"9","author":"L van der Maaten","year":"2008","unstructured":"van der Maaten, L., Hinton, G.: Visualizing Data Using t-SNE. J. Mach. Learn. Res. 9, 2579\u20132605 (2008)","journal-title":"J. Mach. Learn. Res."},{"key":"10_CR9","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1007\/978-3-642-38658-9_39","volume-title":"Artificial Intelligence and Soft Computing","author":"K Marussy","year":"2013","unstructured":"Marussy, K., Buza, K.: SUCCESS: a new approach for semi-supervised classification of time-series. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 437\u2013447. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-38658-9_39"},{"key":"10_CR10","doi-asserted-by":"crossref","unstructured":"Saporta, A., Vu, T., Cord, M., P\u00e9rez, P.: ESL: entropy-guided self-supervised learning for domain adaptation in semantic segmentation. CoRR abs\/2006.08658 (2020)","DOI":"10.1109\/ICCV48922.2021.00894"},{"key":"10_CR11","doi-asserted-by":"crossref","unstructured":"de Sousa, C.A.R., Rezende, S.O., Batista, G.E.A.P.A.: Influence of graph construction on semi-supervised learning. In: ECML\/PKDD, vol. 8190, pp. 160\u2013175 (2013)","DOI":"10.1007\/978-3-642-40994-3_11"},{"key":"10_CR12","volume-title":"Introduction to Data Mining","author":"PN Tan","year":"2005","unstructured":"Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2005)","edition":"1"},{"issue":"118","key":"10_CR13","first-page":"1","volume":"21","author":"R Tavenard","year":"2020","unstructured":"Tavenard, R., et al.: Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 21(118), 1\u20136 (2020)","journal-title":"J. Mach. Learn. Res."},{"issue":"2","key":"10_CR14","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1007\/s10115-013-0706-y","volume":"42","author":"I Triguero","year":"2015","unstructured":"Triguero, I., Garc\u00eda, S., Herrera, F.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42(2), 245\u2013284 (2015)","journal-title":"Knowl. Inf. Syst."},{"issue":"2","key":"10_CR15","doi-asserted-by":"publisher","first-page":"275","DOI":"10.1007\/s10618-012-0250-5","volume":"26","author":"X Wang","year":"2013","unstructured":"Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26(2), 275\u2013309 (2013)","journal-title":"Data Min. Knowl. Discov."},{"key":"10_CR16","doi-asserted-by":"crossref","unstructured":"Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: IJCNN, pp. 1578\u20131585. IEEE (2017)","DOI":"10.1109\/IJCNN.2017.7966039"},{"key":"10_CR17","doi-asserted-by":"crossref","unstructured":"Yamaguchi, Y., Faloutsos, C., Kitagawa, H.: CAMLP: confidence-aware modulated label propagation. In: SDM, pp. 513\u2013521. SIAM (2016)","DOI":"10.1137\/1.9781611974348.58"},{"key":"10_CR18","doi-asserted-by":"crossref","unstructured":"Zhang, X., Gao, Y., Lin, J., Lu, C.: TapNet: multivariate time series classification with attentional prototypical network. In: AAAI, pp. 6845\u20136852 (2020)","DOI":"10.1609\/aaai.v34i04.6165"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2021"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-86383-8_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T14:42:03Z","timestamp":1709822523000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-86383-8_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030863821","9783030863838"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-86383-8_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bratislava","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Slovakia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"496","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"265","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"53% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Conference was held online due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}