{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,30]],"date-time":"2025-03-30T17:04:09Z","timestamp":1743354249738,"version":"3.40.3"},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030863616"},{"type":"electronic","value":"9783030863623"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-86362-3_11","type":"book-chapter","created":{"date-parts":[[2021,9,11]],"date-time":"2021-09-11T11:02:35Z","timestamp":1631358155000},"page":"129-140","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Attention-Based Bi-LSTM for Anomaly Detection on Time-Series Data"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3193-8160","authenticated-orcid":false,"given":"Sanket","family":"Mishra","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9178-9219","authenticated-orcid":false,"given":"Varad","family":"Kshirsagar","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2132-5707","authenticated-orcid":false,"given":"Rohit","family":"Dwivedula","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6031-6408","authenticated-orcid":false,"given":"Chittaranjan","family":"Hota","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,7]]},"reference":[{"key":"11_CR1","doi-asserted-by":"crossref","unstructured":"Ahmad, S., Purdy, S.: Real-time anomaly detection for streaming analytics. arXiv preprint arXiv:1607.02480 (2016)","DOI":"10.1016\/j.neucom.2017.04.070"},{"key":"11_CR2","doi-asserted-by":"publisher","first-page":"134","DOI":"10.1016\/j.neucom.2017.04.070","volume":"262","author":"S Ahmad","year":"2017","unstructured":"Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134\u2013147 (2017). https:\/\/doi.org\/10.1016\/j.neucom.2017.04.070. ISSN 0925\u20132312","journal-title":"Neurocomputing"},{"key":"11_CR3","doi-asserted-by":"publisher","unstructured":"Baziotis, C., Pelekis, N., Doulkeridis, C.: DataStories at SemEval-2017 task 4: deep LSTM with attention for message-level and topic-based sentiment analysis. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval 2017), Vancouver, Canada, August 2017, pp. 747\u2013754. https:\/\/doi.org\/10.18653\/v1\/S17-2126","DOI":"10.18653\/v1\/S17-2126"},{"key":"11_CR4","unstructured":"Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: International Conference on Machine Learning, pp. 115\u2013123. PMLR (2013)"},{"key":"11_CR5","unstructured":"Bergstra, J., Bardenet, R., Bengio, Y., K\u00e9gl, B.: Algorithms for hyper-parameter optimization. In: 25th Annual Conference on Neural Information Processing Systems (NIPS 2011), vol. 24. Neural Information Processing Systems Foundation (2011)"},{"key":"11_CR6","doi-asserted-by":"crossref","unstructured":"Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv preprint arXiv:1901.03407 (2019)","DOI":"10.1145\/3394486.3406704"},{"issue":"3","key":"11_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1541880.1541882","volume":"41","author":"V Chandola","year":"2009","unstructured":"Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1\u201358 (2009)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"11_CR8","unstructured":"Etsy: etsy\/skyline. https:\/\/github.com\/etsy\/skyline"},{"key":"11_CR9","unstructured":"Fukui, H., Hirakawa, T., Yamashita, T., Fujiyoshi, H.: Attention branch network: Learning of attention mechanism for visual explanation. CoRR, abs\/1812.10025 (2018). http:\/\/arxiv.org\/abs\/1812.10025"},{"key":"11_CR10","doi-asserted-by":"publisher","first-page":"432","DOI":"10.1007\/978-3-030-29516-5","volume-title":"SAI Intelligent Systems Conference","author":"D Hu","year":"2019","unstructured":"Hu, D.: An introductory survey on attention mechanisms in NLP problems. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) SAI Intelligent Systems Conference. AISC, vol. 1037, pp. 432\u2013448. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-29516-5"},{"key":"11_CR11","doi-asserted-by":"publisher","unstructured":"Huang, C., Min, G., Wu, Y., Ying, Y., Pei, K., Xiang, Z.: Time series anomaly detection for trustworthy services in cloud computing systems. IEEE Trans. Big Data, 1 (2017). https:\/\/doi.org\/10.1109\/TBDATA.2017.2711039","DOI":"10.1109\/TBDATA.2017.2711039"},{"key":"11_CR12","unstructured":"Introducing practical and robust anomaly detection in a time series, January 2015. https:\/\/blog.twitter.com\/engineering\/en_us\/a\/2015\/introducing-practical-and-robust-anomaly-detection-in-a-time-series.html"},{"key":"11_CR13","doi-asserted-by":"publisher","first-page":"1662","DOI":"10.1109\/ACCESS.2017.2779939","volume":"6","author":"F Karim","year":"2017","unstructured":"Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks for time series classification. IEEE Access 6, 1662\u20131669 (2017)","journal-title":"IEEE Access"},{"key":"11_CR14","doi-asserted-by":"crossref","unstructured":"Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms-the numenta anomaly benchmark. In: 2015 IEEE 14th International Conference on Machine Learning and Applications, pp. 38\u201344. IEEE (2015)","DOI":"10.1109\/ICMLA.2015.141"},{"issue":"4","key":"11_CR15","doi-asserted-by":"publisher","first-page":"431","DOI":"10.1016\/j.bushor.2015.03.008","volume":"58","author":"I Lee","year":"2015","unstructured":"Lee, I., Lee, K.: The internet of things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58(4), 431\u2013440 (2015)","journal-title":"Bus. Horiz."},{"issue":"2","key":"11_CR16","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1007\/BF00648343","volume":"39","author":"NR Lomb","year":"1976","unstructured":"Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39(2), 447\u2013462 (1976)","journal-title":"Astrophys. Space Sci."},{"key":"11_CR17","unstructured":"Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection, July 2016"},{"key":"11_CR18","doi-asserted-by":"publisher","first-page":"1991","DOI":"10.1109\/ACCESS.2018.2886457","volume":"7","author":"M Munir","year":"2019","unstructured":"Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: DeepAnT: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access 7, 1991\u20132005 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2018.2886457","journal-title":"IEEE Access"},{"key":"11_CR19","doi-asserted-by":"publisher","first-page":"05","DOI":"10.3390\/s19112451","volume":"19","author":"M Munir","year":"2019","unstructured":"Munir, M., Siddiqui, S., Chattha, M., Dengel, A., Ahmed, S.: FuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models. Sensors 19, 05 (2019). https:\/\/doi.org\/10.3390\/s19112451","journal-title":"Sensors"},{"key":"11_CR20","doi-asserted-by":"publisher","unstructured":"Pereira, J., Silveira, M.: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1275\u20131282 (2018). https:\/\/doi.org\/10.1109\/ICMLA.2018.00207","DOI":"10.1109\/ICMLA.2018.00207"},{"key":"11_CR21","doi-asserted-by":"crossref","unstructured":"Sadouk, L.: CNN approaches for time series classification. In: Time Series Analysis-Data, Methods, and Applications, pp. 1\u201323. IntechOpen (2019)","DOI":"10.5772\/intechopen.81170"},{"key":"11_CR22","doi-asserted-by":"publisher","first-page":"835","DOI":"10.1086\/160554","volume":"263","author":"JD Scargle","year":"1982","unstructured":"Scargle, J.D.: Studies in astronomical time series analysis. II-statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835\u2013853 (1982)","journal-title":"Astrophys. J."},{"key":"11_CR23","unstructured":"Vaswani, A., et al.: Attention is all you need (2017). https:\/\/arxiv.org\/pdf\/1706.03762.pdf"},{"key":"11_CR24","doi-asserted-by":"crossref","unstructured":"Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187\u2013196 (2018)","DOI":"10.1145\/3178876.3185996"},{"key":"11_CR25","doi-asserted-by":"crossref","unstructured":"Yoon, C., Huh, M., Kang, S.-G., Park, J., Lee, C.: Implement smart farm with IoT technology. In: 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 749\u2013752. IEEE (2018)","DOI":"10.23919\/ICACT.2018.8323907"},{"key":"11_CR26","doi-asserted-by":"publisher","unstructured":"Yu, Y., Liu, G., Yan, H., Li, H., Guan, H.: Attention-based BI-LSTM model for anomalous http traffic detection. In: 2018 15th International Conference on Service Systems and Service Management (ICSSSM), pp. 1\u20136 (2018). https:\/\/doi.org\/10.1109\/ICSSSM.2018.8465034","DOI":"10.1109\/ICSSSM.2018.8465034"},{"key":"11_CR27","unstructured":"Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. arXiv preprint arXiv:1605.07717 (2016)"},{"key":"11_CR28","unstructured":"Zhao, H.G.: Keras-self-attention (2018). https:\/\/github.com\/CyberZHG"},{"key":"11_CR29","doi-asserted-by":"publisher","unstructured":"Zheng, G., Mukherjee, S., Dong, X.L., Li, F.: OpenTag: open attribute value extraction from product profiles. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, pp. 1049\u20131058. Association for Computing Machinery (2018). https:\/\/doi.org\/10.1145\/3219819.3219839. ISBN 9781450355520","DOI":"10.1145\/3219819.3219839"},{"key":"11_CR30","unstructured":"Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2021"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-86362-3_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T00:25:47Z","timestamp":1673223947000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-86362-3_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030863616","9783030863623"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-86362-3_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bratislava","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Slovakia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"496","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"265","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"53% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Conference was held online due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}