{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:46:57Z","timestamp":1742914017109,"version":"3.40.3"},"publisher-location":"Cham","reference-count":41,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030863333"},{"type":"electronic","value":"9783030863340"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-86334-0_23","type":"book-chapter","created":{"date-parts":[[2021,9,4]],"date-time":"2021-09-04T00:16:02Z","timestamp":1630714562000},"page":"350-365","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Attention to Warp: Deep Metric Learning for Multivariate Time Series"],"prefix":"10.1007","author":[{"given":"Shinnosuke","family":"Matsuo","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2816-1781","authenticated-orcid":false,"given":"Xiaomeng","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Gantugs","family":"Atarsaikhan","sequence":"additional","affiliation":[]},{"given":"Akisato","family":"Kimura","sequence":"additional","affiliation":[]},{"given":"Kunio","family":"Kashino","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5146-6818","authenticated-orcid":false,"given":"Brian Kenji","family":"Iwana","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8592-7566","authenticated-orcid":false,"given":"Seiichi","family":"Uchida","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,2]]},"reference":[{"issue":"12","key":"23_CR1","doi-asserted-by":"publisher","first-page":"9321","DOI":"10.1007\/s00521-018-3844-z","volume":"31","author":"K Ahrabian","year":"2019","unstructured":"Ahrabian, K., BabaAli, B.: Usage of autoencoders and Siamese networks for online handwritten signature verification. Neural Comput. Appl. 31(12), 9321\u20139334 (2019)","journal-title":"Neural Comput. Appl."},{"issue":"3","key":"23_CR2","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1007\/s10618-016-0483-9","volume":"31","author":"AJ Bagnall","year":"2017","unstructured":"Bagnall, A.J., Lines, J., Bostrom, A., Large, J., Keogh, E.J.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 31(3), 606\u2013660 (2017)","journal-title":"Data Min. Knowl. Discov."},{"key":"23_CR3","unstructured":"Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR (2015)"},{"key":"23_CR4","doi-asserted-by":"crossref","unstructured":"Bromley, J., Guyon, I., LeCun, Y., S\u00e4ckinger, E., Shah, R.: Signature verification using a Siamese time delay neural network. In: NIPS, pp. 737\u2013744 (1993)","DOI":"10.1142\/9789812797926_0003"},{"key":"23_CR5","unstructured":"Che, Z., He, X., Xu, K., Liu, Y.: DECADE: a deep metric learning model for multivariate time series. In: Workshop on Mining and Learning from Time Series (2017)"},{"key":"23_CR6","doi-asserted-by":"crossref","unstructured":"Coskun, H., Tan, D.J., Conjeti, S., Navab, N., Tombari, F.: Human motion analysis with deep metric learning. In: ECCV, pp. 693\u2013710 (2018)","DOI":"10.1007\/978-3-030-01264-9_41"},{"key":"23_CR7","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1016\/j.asoc.2016.02.017","volume":"43","author":"K Cpalka","year":"2016","unstructured":"Cpalka, K., Zalasinski, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47\u201356 (2016)","journal-title":"Appl. Soft Comput."},{"issue":"3","key":"23_CR8","doi-asserted-by":"publisher","first-page":"981","DOI":"10.1016\/j.patcog.2006.06.007","volume":"40","author":"M Fa\u00fandez-Zanuy","year":"2007","unstructured":"Fa\u00fandez-Zanuy, M.: On-line signature recognition based on VQ-DTW. Pattern Recognit. 40(3), 981\u2013992 (2007)","journal-title":"Pattern Recognit."},{"issue":"4","key":"23_CR9","doi-asserted-by":"publisher","first-page":"917","DOI":"10.1007\/s10618-019-00619-1","volume":"33","author":"HI Fawaz","year":"2019","unstructured":"Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.: Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33(4), 917\u2013963 (2019)","journal-title":"Data Min. Knowl. Discov."},{"issue":"16","key":"23_CR10","doi-asserted-by":"publisher","first-page":"2325","DOI":"10.1016\/j.patrec.2007.07.012","volume":"28","author":"J Fi\u00e9rrez-Aguilar","year":"2007","unstructured":"Fi\u00e9rrez-Aguilar, J., Ortega-Garcia, J., Ramos, D., Gonzalez-Rodriguez, J.: HMM-based on-line signature verification: feature extraction and signature modeling. Pattern Recognit. Lett. 28(16), 2325\u20132334 (2007)","journal-title":"Pattern Recognit. Lett."},{"key":"23_CR11","doi-asserted-by":"crossref","unstructured":"Ge, X., Smyth, P.: Deformable Markov model templates for time-series pattern matching. In: KDD, pp. 81\u201390 (2000)","DOI":"10.1145\/347090.347109"},{"key":"23_CR12","unstructured":"Grabocka, J., Schmidt-Thieme, L.: NeuralWarp: time-series similarity with warping networks. CoRR (2018)"},{"key":"23_CR13","doi-asserted-by":"crossref","unstructured":"Guyon, I., Schomaker, L., Plamondon, R., Liberman, M., Janet, S.: UNIPEN project of on-line data exchange and recognizer benchmarks. In: ICPR, pp. 29\u201333 (1994)","DOI":"10.1109\/ICPR.1994.576870"},{"key":"23_CR14","doi-asserted-by":"crossref","unstructured":"Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR, pp. 1735\u20131742 (2006)","DOI":"10.1109\/CVPR.2006.100"},{"key":"23_CR15","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In: ICCV, pp. 1026\u20131034 (2015)","DOI":"10.1109\/ICCV.2015.123"},{"issue":"15","key":"23_CR16","doi-asserted-by":"publisher","first-page":"2400","DOI":"10.1016\/j.patrec.2005.04.017","volume":"26","author":"A Kholmatov","year":"2005","unstructured":"Kholmatov, A., Yanikoglu, B.A.: Identity authentication using improved online signature verification method. Pattern Recognit. Lett. 26(15), 2400\u20132408 (2005)","journal-title":"Pattern Recognit. Lett."},{"key":"23_CR17","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)"},{"key":"23_CR18","doi-asserted-by":"crossref","unstructured":"Lai, S., Jin, L., Lin, L., Zhu, Y., Mao, H.: SynSig2Vec: learning representations from synthetic dynamic signatures for real-world verification. In: AAAI, pp. 735\u2013742 (2020)","DOI":"10.1609\/aaai.v34i01.5416"},{"key":"23_CR19","doi-asserted-by":"crossref","unstructured":"Li, C., et al.: A stroke-based RNN for writer-independent online signature verification. In: ICDAR, pp. 526\u2013532 (2019)","DOI":"10.1109\/ICDAR.2019.00090"},{"issue":"3","key":"23_CR20","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1007\/s10618-014-0361-2","volume":"29","author":"J Lines","year":"2015","unstructured":"Lines, J., Bagnall, A.J.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Discov. 29(3), 565\u2013592 (2015)","journal-title":"Data Min. Knowl. Discov."},{"key":"23_CR21","doi-asserted-by":"crossref","unstructured":"Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: EMNLP, pp. 1412\u20131421 (2015)","DOI":"10.18653\/v1\/D15-1166"},{"issue":"2","key":"23_CR22","doi-asserted-by":"publisher","first-page":"306","DOI":"10.1109\/TPAMI.2008.76","volume":"31","author":"P Marteau","year":"2009","unstructured":"Marteau, P.: Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 306\u2013318 (2009)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"23_CR23","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1049\/iet-bmt.2013.0081","volume":"3","author":"M Martinez-Diaz","year":"2014","unstructured":"Martinez-Diaz, M., Fi\u00e9rrez, J., Krish, R.P., Galbally, J.: Mobile signature verification: Feature robustness and performance comparison. IET Biom. 3(4), 267\u2013277 (2014)","journal-title":"IET Biom."},{"key":"23_CR24","doi-asserted-by":"crossref","unstructured":"Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity. In: AAAI, pp. 2786\u20132792 (2016)","DOI":"10.1609\/aaai.v30i1.10350"},{"issue":"5","key":"23_CR25","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1016\/j.patrec.2007.10.003","volume":"29","author":"L Nanni","year":"2008","unstructured":"Nanni, L., Lumini, A.: A novel local on-line signature verification system. Pattern Recognit. Lett. 29(5), 559\u2013568 (2008)","journal-title":"Pattern Recognit. Lett."},{"issue":"6","key":"23_CR26","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1049\/ip-vis:20031078","volume":"150","author":"J Ortega-Garcia","year":"2003","unstructured":"Ortega-Garcia, J., et al.: MCYT baseline corpus: a bimodal biometric database. IEE Proc. Vis. Image Sig. Process. 150(6), 395\u2013401 (2003)","journal-title":"IEE Proc. Vis. Image Sig. Process."},{"key":"23_CR27","doi-asserted-by":"crossref","unstructured":"Rakthanmanon, T., et al.: Searching and mining trillions of time series subsequences under dynamic time warping. In: KDD, pp. 262\u2013270 (2012)","DOI":"10.1145\/2339530.2339576"},{"key":"23_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"23_CR29","doi-asserted-by":"crossref","unstructured":"Roy, D., Mohan, C.K., Murty, K.S.R.: Action recognition based on discriminative embedding of actions using Siamese networks. In: ICIP, pp. 3473\u20133477 (2018)","DOI":"10.1109\/ICIP.2018.8451226"},{"issue":"6","key":"23_CR30","doi-asserted-by":"publisher","first-page":"933","DOI":"10.1109\/TIFS.2014.2316472","volume":"9","author":"N Sae-Bae","year":"2014","unstructured":"Sae-Bae, N., Memon, N.D.: Online signature verification on mobile devices. IEEE Trans. Inf. Forensics Secur. 9(6), 933\u2013947 (2014)","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"issue":"1","key":"23_CR31","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1109\/TASSP.1978.1163055","volume":"26","author":"H Sakoe","year":"1978","unstructured":"Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43\u201349 (1978)","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"key":"23_CR32","unstructured":"Tallec, C., Ollivier, Y.: Can recurrent neural networks warp time? In: ICLR (2018)"},{"issue":"4","key":"23_CR33","doi-asserted-by":"publisher","first-page":"861","DOI":"10.1109\/TIFS.2017.2769023","volume":"13","author":"L Tang","year":"2018","unstructured":"Tang, L., Kang, W., Fang, Y.: Information divergence-based matching strategy for online signature verification. IEEE Trans. Inf. Forensics Secur. 13(4), 861\u2013873 (2018)","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"23_CR34","doi-asserted-by":"publisher","first-page":"5128","DOI":"10.1109\/ACCESS.2018.2793966","volume":"6","author":"R Tolosana","year":"2018","unstructured":"Tolosana, R., Vera-Rodr\u00edguez, R., Fi\u00e9rrez, J., Ortega-Garcia, J.: Exploring recurrent neural networks for on-line handwritten signature biometrics. IEEE Access 6, 5128\u20135138 (2018)","journal-title":"IEEE Access"},{"issue":"2","key":"23_CR35","doi-asserted-by":"publisher","first-page":"229","DOI":"10.1109\/TBIOM.2021.3054533","volume":"3","author":"R Tolosana","year":"2021","unstructured":"Tolosana, R., Vera-Rodr\u00edguez, R., Fi\u00e9rrez, J., Ortega-Garcia, J.: DeepSign: deep on-line signature verification. IEEE Trans. Biom. Behav. Identity Sci. 3(2), 229\u2013239 (2021)","journal-title":"IEEE Trans. Biom. Behav. Identity Sci."},{"key":"23_CR36","unstructured":"Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998\u20136008 (2017)"},{"issue":"1","key":"23_CR37","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1016\/j.patcog.2008.07.008","volume":"42","author":"C Vivaracho-Pascual","year":"2009","unstructured":"Vivaracho-Pascual, C., Fa\u00fandez-Zanuy, M., Pascual, J.M.: An efficient low cost approach for on-line signature recognition based on length normalization and fractional distances. Pattern Recognit. 42(1), 183\u2013193 (2009)","journal-title":"Pattern Recognit."},{"key":"23_CR38","doi-asserted-by":"crossref","unstructured":"Vorugunti, C.S., Guru, D.S., Mukherjee, P., Pulabaigari, V.: OSVNet: convolutional Siamese network for writer independent online signature verification. In: ICDAR, pp. 1470\u20131475 (2019)","DOI":"10.1109\/ICDAR.2019.00236"},{"key":"23_CR39","doi-asserted-by":"crossref","unstructured":"Wu, X., Kimura, A., Iwana, B.K., Uchida, S., Kashino, K.: Deep dynamic time warping: end-to-end local representation learning for online signature verification. In: ICDAR, pp. 1103\u20131110 (2019)","DOI":"10.1109\/ICDAR.2019.00179"},{"key":"23_CR40","doi-asserted-by":"crossref","unstructured":"Wu, X., Kimura, A., Uchida, S., Kashino, K.: Prewarping Siamese network: Learning local representations for online signature verification. In: ICASSP, pp. 2467\u20132471 (2019)","DOI":"10.1109\/ICASSP.2019.8683036"},{"key":"23_CR41","doi-asserted-by":"crossref","unstructured":"Yanikoglu, B.A., Kholmatov, A.: Online signature verification using Fourier descriptors. EURASIP J. Adv. Sig. Process. (2009)","DOI":"10.1155\/2009\/260516"}],"container-title":["Lecture Notes in Computer Science","Document Analysis and Recognition \u2013 ICDAR 2021"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-86334-0_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T19:33:31Z","timestamp":1725737611000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-86334-0_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030863333","9783030863340"],"references-count":41,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-86334-0_23","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"2 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICDAR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Document Analysis and Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lausanne","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Switzerland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icdar2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iapr.org\/icdar2021","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"340","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"182","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"54% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.9","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4.9","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Additionally, 13 competition reports are included.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}