{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:04:28Z","timestamp":1726135468800},"publisher-location":"Cham","reference-count":41,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030862701"},{"type":"electronic","value":"9783030862718"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-86271-8_20","type":"book-chapter","created":{"date-parts":[[2021,9,14]],"date-time":"2021-09-14T23:08:06Z","timestamp":1631660886000},"page":"231-242","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Fight Detection in Images Using Postural Analysis"],"prefix":"10.1007","author":[{"given":"Eneko Atxa","family":"Landa","sequence":"first","affiliation":[]},{"given":"Jos\u00e9 Gaviria","family":"de la Puerta","sequence":"additional","affiliation":[]},{"given":"Inigo","family":"Lopez-Gazpio","sequence":"additional","affiliation":[]},{"given":"Iker","family":"Pastor-L\u00f3pez","sequence":"additional","affiliation":[]},{"given":"Alberto","family":"Tellaeche","sequence":"additional","affiliation":[]},{"given":"Pablo Garc\u00eda","family":"Bringas","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,15]]},"reference":[{"key":"20_CR1","unstructured":"SDM: Rise of surveillance camera installed base slows (2016)"},{"key":"20_CR2","doi-asserted-by":"crossref","unstructured":"Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. (2018)","DOI":"10.1155\/2018\/7068349"},{"key":"20_CR3","doi-asserted-by":"crossref","unstructured":"Smith, R.: An overview of the tesseract OCR engine. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629\u2013633. IEEE (2007)","DOI":"10.1109\/ICDAR.2007.4376991"},{"key":"20_CR4","doi-asserted-by":"publisher","first-page":"113816","DOI":"10.1016\/j.eswa.2020.113816","volume":"165","author":"C Badue","year":"2020","unstructured":"Badue, C., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2020)","journal-title":"Expert Syst. Appl."},{"key":"20_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"332","DOI":"10.1007\/978-3-642-23678-5_39","volume-title":"Computer Analysis of Images and Patterns","author":"E Bermejo Nievas","year":"2011","unstructured":"Bermejo Nievas, E., Deniz Suarez, O., Bueno Garc\u00eda, G., Sukthankar, R.: Violence detection in video using computer vision techniques. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6855, pp. 332\u2013339. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-23678-5_39"},{"key":"20_CR6","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1109\/TPAMI.2019.2929257","volume":"43","author":"Z Cao","year":"2019","unstructured":"Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172\u2013186 (2019)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"20_CR7","doi-asserted-by":"publisher","first-page":"102897","DOI":"10.1016\/j.cviu.2019.102897","volume":"192","author":"Y Chen","year":"2020","unstructured":"Chen, Y., Tian, Y., He, M.: Monocular human pose estimation: a survey of deep learning-based methods. Comput. Vis. Image Underst. 192, 102897 (2020)","journal-title":"Comput. Vis. Image Underst."},{"key":"20_CR8","unstructured":"Li, B., Dai, Y., Cheng, X., Chen, H., Lin, Y., He, M.: Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep CNN. In: 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 601\u2013604. IEEE (2017)"},{"key":"20_CR9","unstructured":"Li, B., Chen, H., Chen, Y., Dai, Y., He, M.: Skeleton boxes: solving skeleton based action detection with a single deep convolutional neural network. In: 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 613\u2013616. IEEE (2017)"},{"key":"20_CR10","doi-asserted-by":"crossref","unstructured":"Insafutdinov, E., et al.: ArtTrack: articulated multi-person tracking in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6457\u20136465 (2017)","DOI":"10.1109\/CVPR.2017.142"},{"key":"20_CR11","doi-asserted-by":"crossref","unstructured":"Cannataro, M., Cuzzocrea, A., Pugliese, A.: Xahm: an adaptive hypermedia model based on xml. In: Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering, pp. 627\u2013634 (2002)","DOI":"10.1145\/568760.568869"},{"issue":"12","key":"20_CR12","doi-asserted-by":"publisher","first-page":"2821","DOI":"10.1109\/TPAMI.2012.241","volume":"35","author":"J Shotton","year":"2012","unstructured":"Shotton, J., et al.: Efficient human pose estimation from single depth images. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821\u20132840 (2012)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"20_CR13","doi-asserted-by":"crossref","unstructured":"Faessler, M., Mueggler, E., Schwabe, K., Scaramuzza, D.: A monocular pose estimation system based on infrared leds. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 907\u2013913. IEEE (2014)","DOI":"10.1109\/ICRA.2014.6906962"},{"key":"20_CR14","doi-asserted-by":"crossref","unstructured":"Zhao, M., et al.: Through-wall human pose estimation using radio signals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7356\u20137365 (2018)","DOI":"10.1109\/CVPR.2018.00768"},{"key":"20_CR15","doi-asserted-by":"crossref","unstructured":"Rhodin, H., et al.: Learning monocular 3D human pose estimation from multi-view images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8437\u20138446 (2018)","DOI":"10.1109\/CVPR.2018.00880"},{"key":"20_CR16","doi-asserted-by":"crossref","unstructured":"Cuzzocrea, A., Mansmann, S.: OLAP visualization: models, issues, and techniques. In: Encyclopedia of Data Warehousing and Mining, Second Edition, pp. 1439\u20131446. IGI Global (2009)","DOI":"10.4018\/978-1-60566-010-3.ch222"},{"key":"20_CR17","doi-asserted-by":"crossref","unstructured":"Cuzzocrea, A., Song, I.Y.: Big graph analytics: the state of the art and future research agenda. In: Proceedings of the 17th International Workshop on Data Warehousing and OLAP, pp. 99\u2013101 (2014)","DOI":"10.1145\/2666158.2668454"},{"key":"20_CR18","doi-asserted-by":"crossref","unstructured":"Luvizon, D.C., Picard, D., Tabia, H.: 2D\/3D pose estimation and action recognition using multitask deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5137\u20135146 (2018)","DOI":"10.1109\/CVPR.2018.00539"},{"key":"20_CR19","doi-asserted-by":"crossref","unstructured":"Zhang, F., Zhu, X., Ye, M.: Fast human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3517\u20133526 (2019)","DOI":"10.1109\/CVPR.2019.00363"},{"key":"20_CR20","doi-asserted-by":"crossref","unstructured":"Moon, G., Chang, J.Y., Lee, K.M.: Posefix: model-agnostic general human pose refinement network. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7773\u20137781 (2019)","DOI":"10.1109\/CVPR.2019.00796"},{"key":"20_CR21","doi-asserted-by":"crossref","unstructured":"Kreiss, S., Bertoni, L., Alahi, A.: PifPaf: composite fields for human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11977\u201311986 (2019)","DOI":"10.1109\/CVPR.2019.01225"},{"key":"20_CR22","doi-asserted-by":"crossref","unstructured":"Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9887\u20139895 (2019)","DOI":"10.1109\/CVPR.2019.01012"},{"key":"20_CR23","doi-asserted-by":"crossref","unstructured":"Arnab, A., Doersch, C., Zisserman, A.: Exploiting temporal context for 3D human pose estimation in the wild. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3395\u20133404 (2019)","DOI":"10.1109\/CVPR.2019.00351"},{"issue":"4","key":"20_CR24","doi-asserted-by":"publisher","first-page":"82-1","DOI":"10.1145\/3386569.3392410","volume":"39","author":"D Mehta","year":"2020","unstructured":"Mehta, D., et al.: XNect: real-time multi-person 3D motion capture with a single RGB camera. ACM Trans. Graph. (TOG) 39(4), 82\u20131 (2020)","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"20_CR25","doi-asserted-by":"crossref","unstructured":"Huang, S., Gong, M., Tao, D.: A coarse-fine network for keypoint localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3028\u20133037 (2017)","DOI":"10.1109\/ICCV.2017.329"},{"key":"20_CR26","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980\u20132988 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"20_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"472","DOI":"10.1007\/978-3-030-01231-1_29","volume-title":"Computer Vision \u2013 ECCV 2018","author":"B Xiao","year":"2018","unstructured":"Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472\u2013487. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01231-1_29"},{"key":"20_CR28","doi-asserted-by":"crossref","unstructured":"Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7103\u20137112 (2018)","DOI":"10.1109\/CVPR.2018.00742"},{"key":"20_CR29","doi-asserted-by":"crossref","unstructured":"Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693\u20135703 (2019)","DOI":"10.1109\/CVPR.2019.00584"},{"key":"20_CR30","unstructured":"Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. arXiv preprint arXiv:1611.05424 (2016)"},{"key":"20_CR31","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"282","DOI":"10.1007\/978-3-030-01264-9_17","volume-title":"Computer Vision \u2013 ECCV 2018","author":"G Papandreou","year":"2018","unstructured":"Papandreou, G., Zhu, T., Chen, L.-C., Gidaris, S., Tompson, J., Murphy, K.: PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision \u2013 ECCV 2018. LNCS, vol. 11218, pp. 282\u2013299. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01264-9_17"},{"key":"20_CR32","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1007\/978-3-030-01252-6_26","volume-title":"Computer Vision \u2013 ECCV 2018","author":"M Kocabas","year":"2018","unstructured":"Kocabas, M., Karagoz, S., Akbas, E.: MultiPoseNet: fast multi-person pose estimation using pose residual network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 437\u2013453. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01252-6_26"},{"key":"20_CR33","unstructured":"Cheng, M., Cai, K., Li, M.: Rwf-2000: an open large scale video database for violence detection. arXiv preprint arXiv:1911.05913 (2019)"},{"issue":"1\u201312","key":"20_CR34","first-page":"4","volume":"4","author":"S Blunsden","year":"2010","unstructured":"Blunsden, S., Fisher, R.B.: The BEHAVE video dataset: ground truthed video for multi-person behavior classification. Ann. BMVA 4(1\u201312), 4 (2010)","journal-title":"Ann. BMVA"},{"key":"20_CR35","doi-asserted-by":"crossref","unstructured":"Rota, P., Conci, N., Sebe, N., Rehg, J.M.: Real-life violent social interaction detection. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3456\u20133460. IEEE (2015)","DOI":"10.1109\/ICIP.2015.7351446"},{"issue":"17","key":"20_CR36","doi-asserted-by":"publisher","first-page":"7379","DOI":"10.1007\/s11042-014-1984-4","volume":"74","author":"C-H Demarty","year":"2015","unstructured":"Demarty, C.-H., Penet, C., Soleymani, M., Gravier, G.: VSD, a public dataset for the detection of violent scenes in movies: design, annotation, analysis and evaluation. Multimed. Tools Appl. 74(17), 7379\u20137404 (2015). https:\/\/doi.org\/10.1007\/s11042-014-1984-4","journal-title":"Multimed. Tools Appl."},{"key":"20_CR37","doi-asserted-by":"crossref","unstructured":"Perez, M., Kot, A.C., Rocha, A.: Detection of real-world fights in surveillance videos. In: ICASSP 2019\u20132019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2662\u20132666. IEEE (2019)","DOI":"10.1109\/ICASSP.2019.8683676"},{"key":"20_CR38","unstructured":"Nievas, E.B., Suarez, O.D., Garcia, G.B., Sukthankar, R.: Movies fight detection dataset. In: Computer Analysis of Images and Patterns, pp. 332\u2013339. Springer (2011)"},{"key":"20_CR39","doi-asserted-by":"crossref","unstructured":"Hassner, T., Itcher, Y., Kliper-Gross, O.: Violent flows: real-time detection of violent crowd behavior. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1\u20136. IEEE (2012)","DOI":"10.1109\/CVPRW.2012.6239348"},{"key":"20_CR40","doi-asserted-by":"crossref","unstructured":"Yun, K., Honorio, J., Chattopadhyay, D., Berg, T.L., Samaras, D.: Two-person interaction detection using body-pose features and multiple instance learning. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 28\u201335. IEEE (2012)","DOI":"10.1109\/CVPRW.2012.6239234"},{"key":"20_CR41","doi-asserted-by":"crossref","unstructured":"Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6479\u20136488 (2018)","DOI":"10.1109\/CVPR.2018.00678"}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-86271-8_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T19:33:15Z","timestamp":1710358395000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-86271-8_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030862701","9783030862718"],"references-count":41,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-86271-8_20","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"15 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bilbao","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2021.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"81","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"11","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"54% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2-3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}