{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:35:49Z","timestamp":1742913349833,"version":"3.40.3"},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030841850"},{"type":"electronic","value":"9783030841867"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-84186-7_20","type":"book-chapter","created":{"date-parts":[[2021,8,7]],"date-time":"2021-08-07T10:03:42Z","timestamp":1628330622000},"page":"297-307","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Improving Entity Linking by Encoding Type Information into Entity Embeddings"],"prefix":"10.1007","author":[{"given":"Tianran","family":"Li","sequence":"first","affiliation":[]},{"given":"Erguang","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yujie","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jinan","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Yufeng","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,8,8]]},"reference":[{"key":"20_CR1","unstructured":"Cao, Y., Hou, L., Li, J., Liu, Z.: Neural collective entity linking. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 675\u2013686. Association for Computational Linguistics, Santa Fe (2018). https:\/\/www.aclweb.org\/anthology\/C18-1057"},{"key":"20_CR2","unstructured":"Chen, S., Wang, J., Jiang, F., Lin, C.: Improving entity linking by modeling latent entity type information. CoRR abs\/2001.01447 (2020). http:\/\/arxiv.org\/abs\/2001.01447"},{"key":"20_CR3","unstructured":"Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs\/1810.04805 (2018). http:\/\/arxiv.org\/abs\/1810.04805"},{"key":"20_CR4","doi-asserted-by":"publisher","unstructured":"Eshel, Y., Cohen, N., Radinsky, K., Markovitch, S., Yamada, I., Levy, O.: Named entity disambiguation for noisy text. In: Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pp. 58\u201368. Association for Computational Linguistics (2017). https:\/\/doi.org\/10.18653\/v1\/K17-1008, https:\/\/www.aclweb.org\/anthology\/K17-1008","DOI":"10.18653\/v1\/K17-1008"},{"key":"20_CR5","doi-asserted-by":"publisher","unstructured":"Ganea, O.E., Hofmann, T.: Deep joint entity disambiguation with local neural attention. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2619\u20132629. Association for Computational Linguistics, Copenhagen (2017). https:\/\/doi.org\/10.18653\/v1\/D17-1277, https:\/\/www.aclweb.org\/anthology\/D17-1277","DOI":"10.18653\/v1\/D17-1277"},{"key":"20_CR6","doi-asserted-by":"publisher","unstructured":"Gupta, N., Singh, S., Roth, D.: Entity linking via joint encoding of types, descriptions, and context. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2681\u20132690. Association for Computational Linguistics, Copenhagen (2017). https:\/\/doi.org\/10.18653\/v1\/D17-1284, https:\/\/www.aclweb.org\/anthology\/D17-1284","DOI":"10.18653\/v1\/D17-1284"},{"key":"20_CR7","unstructured":"Hoffart, J., et al.: Robust disambiguation of named entities in text. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 782\u2013792. Association for Computational Linguistics, Edinburgh (2011). https:\/\/www.aclweb.org\/anthology\/D11-1072"},{"key":"20_CR8","doi-asserted-by":"publisher","unstructured":"Hou, F., Wang, R., He, J., Zhou, Y.: Improving entity linking through semantic reinforced entity embeddings. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6843\u20136848. Association for Computational Linguistics, Online (2020). https:\/\/doi.org\/10.18653\/v1\/2020.acl-main.612, https:\/\/www.aclweb.org\/anthology\/2020.acl-main.612","DOI":"10.18653\/v1\/2020.acl-main.612"},{"issue":"1","key":"20_CR9","doi-asserted-by":"publisher","first-page":"503","DOI":"10.1162\/tacl_a_00154","volume":"3","author":"N Lazic","year":"2015","unstructured":"Lazic, N., Subramanya, A., Ringgaard, M., Pereira, F.: Plato: a selective context model for entity resolution. Trans. Assoc. Comput. Linguist. 3(1), 503\u2013515 (2015)","journal-title":"Trans. Assoc. Comput. Linguist."},{"key":"20_CR10","doi-asserted-by":"publisher","unstructured":"Le, P., Titov, I.: Improving entity linking by modeling latent relations between mentions. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1595\u20131604. Association for Computational Linguistics, Melbourne (2018). https:\/\/doi.org\/10.18653\/v1\/P18-1148, https:\/\/www.aclweb.org\/anthology\/P18-1148","DOI":"10.18653\/v1\/P18-1148"},{"key":"20_CR11","doi-asserted-by":"publisher","unstructured":"Le, P., Titov, I.: Boosting entity linking performance by leveraging unlabeled documents. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1935\u20131945. Association for Computational Linguistics, Florence (2019). https:\/\/doi.org\/10.18653\/v1\/P19-1187, https:\/\/www.aclweb.org\/anthology\/P19-1187","DOI":"10.18653\/v1\/P19-1187"},{"key":"20_CR12","doi-asserted-by":"crossref","unstructured":"Ling, X., Weld, D.S.: Fine-grained entity recognition. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (2012)","DOI":"10.1609\/aaai.v26i1.8122"},{"key":"20_CR13","doi-asserted-by":"publisher","unstructured":"Logeswaran, L., Chang, M.W., Lee, K., Toutanova, K., Devlin, J., Lee, H.: Zero-shot entity linking by reading entity descriptions. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3449\u20133460. Association for Computational Linguistics, Florence (2019). https:\/\/doi.org\/10.18653\/v1\/P19-1335, https:\/\/www.aclweb.org\/anthology\/P19-1335","DOI":"10.18653\/v1\/P19-1335"},{"key":"20_CR14","first-page":"3221","volume":"15","author":"LJPVD Maaten","year":"2014","unstructured":"Maaten, L.J.P.V.D.: Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221\u20133245 (2014)","journal-title":"J. Mach. Learn. Res."},{"key":"20_CR15","unstructured":"Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. Computer Science (2013)"},{"key":"20_CR16","doi-asserted-by":"crossref","unstructured":"Rijhwani, S., Xie, J., Neubig, G., Carbonell, J.: Zero-shot neural transfer for cross-lingual entity linking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6924\u20136931 (2019)","DOI":"10.1609\/aaai.v33i01.33016924"},{"key":"20_CR17","doi-asserted-by":"publisher","unstructured":"Sevgili, \u00d6., Panchenko, A., Biemann, C.: Improving neural entity disambiguation with graph embeddings. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pp. 315\u2013322. Association for Computational Linguistics, Florence (2019). https:\/\/doi.org\/10.18653\/v1\/P19-2044, https:\/\/www.aclweb.org\/anthology\/P19-2044","DOI":"10.18653\/v1\/P19-2044"},{"key":"20_CR18","doi-asserted-by":"publisher","unstructured":"Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding of words and entities for named entity disambiguation. In: Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pp. 250\u2013259. Association for Computational Linguistics, Berlin (2016). https:\/\/doi.org\/10.18653\/v1\/K16-1025, https:\/\/www.aclweb.org\/anthology\/K16-1025","DOI":"10.18653\/v1\/K16-1025"},{"key":"20_CR19","doi-asserted-by":"publisher","unstructured":"Yang, X., et al.: Learning dynamic context augmentation for global entity linking. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 271\u2013281. Association for Computational Linguistics, Hong Kong (2019). https:\/\/doi.org\/10.18653\/v1\/D19-1026, https:\/\/www.aclweb.org\/anthology\/D19-1026","DOI":"10.18653\/v1\/D19-1026"},{"key":"20_CR20","doi-asserted-by":"publisher","unstructured":"Zhou, B., Khashabi, D., Tsai, C.T., Roth, D.: Zero-shot open entity typing as type-compatible grounding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2065\u20132076. Association for Computational Linguistics, Brussels (2018). https:\/\/doi.org\/10.18653\/v1\/D18-1231, https:\/\/www.aclweb.org\/anthology\/D18-1231","DOI":"10.18653\/v1\/D18-1231"},{"key":"20_CR21","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1162\/tacl_a_00303","volume":"8","author":"S Zhou","year":"2020","unstructured":"Zhou, S., Rijhwani, S., Wieting, J., Carbonell, J., Neubig, G.: Improving candidate generation for low-resource cross-lingual entity linking. Trans. Assoc. Comput. Linguist. 8, 109\u2013124 (2020)","journal-title":"Trans. Assoc. Comput. Linguist."}],"container-title":["Lecture Notes in Computer Science","Chinese Computational Linguistics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-84186-7_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,6]],"date-time":"2023-01-06T21:44:47Z","timestamp":1673041487000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-84186-7_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030841850","9783030841867"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-84186-7_20","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"8 August 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CCL","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China National Conference on Chinese Computational Linguistics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Hohhot","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 August 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 August 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cncl2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.cips-cl.org\/static\/CCL2021\/en\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"www.softconf.com","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"90","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"34% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}