{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T09:00:49Z","timestamp":1726131649752},"publisher-location":"Cham","reference-count":53,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030824266"},{"type":"electronic","value":"9783030824273"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2021,7,21]],"date-time":"2021-07-21T00:00:00Z","timestamp":1626825600000},"content-version":"vor","delay-in-days":201,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"abstract":"Abstract<\/jats:title>We are entering an age of \u2018big\u2019 computational neuroscience, in which neural network models are increasing in size and in numbers of underlying data sets. Consolidating the zoo of models into large-scale models simultaneously consistent with a wide range of data is only possible through the effort of large teams, which can be spread across multiple research institutions. To ensure that computational neuroscientists can build on each other\u2019s work, it is important to make models publicly available as well-documented code. This chapter describes such an open-source model, which relates the connectivity structure of all vision-related cortical areas of the macaque monkey with their resting-state dynamics. We give a brief overview of how to use the executable model specification, which employs NEST as simulation engine, and show its runtime scaling. The solutions found serve as an example for organizing the workflow of future models from the raw experimental data to the visualization of the results, expose the challenges, and give guidance for the construction of an ICT infrastructure for neuroscience.<\/jats:p>","DOI":"10.1007\/978-3-030-82427-3_4","type":"book-chapter","created":{"date-parts":[[2021,7,20]],"date-time":"2021-07-20T03:03:33Z","timestamp":1626750213000},"page":"47-59","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Usage and Scaling of an Open-Source Spiking Multi-Area Model of Monkey Cortex"],"prefix":"10.1007","author":[{"given":"Sacha J.","family":"van Albada","sequence":"first","affiliation":[]},{"given":"Jari","family":"Pronold","sequence":"additional","affiliation":[]},{"given":"Alexander","family":"van Meegen","sequence":"additional","affiliation":[]},{"given":"Markus","family":"Diesmann","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,7,21]]},"reference":[{"key":"4_CR1","doi-asserted-by":"publisher","first-page":"2","DOI":"10.3389\/fninf.2018.00002","volume":"12","author":"J Jordan","year":"2018","unstructured":"Jordan, J., et al.: Extremely scalable spiking neuronal network simulation code: from laptops to exascale computers. Front. Neuroinform. 12, 2 (2018)","journal-title":"Front. Neuroinform."},{"unstructured":"van Albada, S.J., et al.: Bringing anatomical information into neuronal network models. arXiv preprint arXiv:2007.00031 (2020)","key":"4_CR2"},{"issue":"6","key":"4_CR3","doi-asserted-by":"publisher","first-page":"587","DOI":"10.1016\/S0924-977X(02)00108-6","volume":"12","author":"K Zilles","year":"2002","unstructured":"Zilles, K., et al.: Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur. Neuropsychopharmacol. 12(6), 587\u2013599 (2002)","journal-title":"Eur. Neuropsychopharmacol."},{"key":"4_CR4","doi-asserted-by":"publisher","first-page":"30","DOI":"10.3389\/fninf.2012.00030","volume":"6","author":"R Bakker","year":"2012","unstructured":"Bakker, R., Thomas, W., Diesmann, M.: CoCoMac 2.0 and the future of tract-tracing databases. Front. Neuroinform. 6, 30 (2012)","journal-title":"Front. Neuroinform."},{"key":"4_CR5","doi-asserted-by":"publisher","first-page":"120","DOI":"10.3389\/fncom.2015.00120","volume":"9","author":"MW Reimann","year":"2015","unstructured":"Reimann, M.W., King, J.G., Muller, E.B., Ramaswamy, S., Markram, H.: An algorithm to predict the connectome of neural microcircuits. Front. Comput. Neurosci. 9, 120 (2015)","journal-title":"Front. Comput. Neurosci."},{"key":"4_CR6","doi-asserted-by":"publisher","first-page":"84","DOI":"10.3389\/fninf.2018.00084","volume":"12","author":"C Er\u00f6","year":"2018","unstructured":"Er\u00f6, C., Gewaltig, M.O., Keller, D., Markram, H.: A cell atlas for the mouse brain. Front. Neuroinform. 12, 84 (2018)","journal-title":"Front. Neuroinform."},{"key":"4_CR7","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1038\/s41586-018-0654-5","volume":"563","author":"B Tasic","year":"2018","unstructured":"Tasic, B., et al.: Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72\u201378 (2018)","journal-title":"Nature"},{"key":"4_CR8","doi-asserted-by":"publisher","first-page":"1182","DOI":"10.1038\/s41593-019-0417-0","volume":"22","author":"NW Gouwens","year":"2019","unstructured":"Gouwens, N.W., et al.: Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nat. Neurosci. 22, 1182\u20131195 (2019)","journal-title":"Nat. Neurosci."},{"doi-asserted-by":"crossref","unstructured":"Sugino, K., et al.: Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain. eLife 8, e38619 (2019)","key":"4_CR9","DOI":"10.7554\/eLife.38619"},{"issue":"1","key":"4_CR10","doi-asserted-by":"publisher","first-page":"268","DOI":"10.1016\/j.cell.2019.07.042","volume":"179","author":"J Winnubst","year":"2019","unstructured":"Winnubst, J., et al.: Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179(1), 268\u2013281 (2019)","journal-title":"Cell"},{"issue":"3","key":"4_CR11","doi-asserted-by":"publisher","first-page":"1409","DOI":"10.1007\/s00429-017-1554-4","volume":"223","author":"M Schmidt","year":"2018","unstructured":"Schmidt, M., Bakker, R., Hilgetag, C.C., Diesmann, M., van Albada, S.J.: Multi-scale account of the network structure of macaque visual cortex. Brain Struct. Func. 223(3), 1409\u20131435 (2018)","journal-title":"Brain Struct. Func."},{"issue":"10","key":"4_CR12","doi-asserted-by":"publisher","first-page":"e1006359","DOI":"10.1371\/journal.pcbi.1006359","volume":"14","author":"M Schmidt","year":"2018","unstructured":"Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., van Albada, S.J.: A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14(10), e1006359 (2018)","journal-title":"PLoS Comput. Biol."},{"unstructured":"Shimoura, R.O., Roque, A.C., Diesmann, M., van Albada, S.J.: Visual alpha generators in a spiking thalamocortical microcircuit model. In: 28th Annual Computational Neuroscience Meeting, P204 (2019)","key":"4_CR13"},{"unstructured":"Korcsak-Gorzo, A., van Meegen, A., Scherr, F., Subramoney, A., Maass, W., van Albada, S.J.: Learning-to-learn in data-based columnar models of visual cortex. In: Bernstein Conference 2019, W9 (2019)","key":"4_CR14"},{"unstructured":"Pronold, J., van Meegen, A., Bakker, R., Morales-Gregorio, A., van Albada, S.J.: Multi-area spiking network models of macaque and human cortices. In: NEST Conference 2019, p. 30 (2019)","key":"4_CR15"},{"issue":"4","key":"4_CR16","doi-asserted-by":"publisher","first-page":"1430","DOI":"10.4249\/scholarpedia.1430","volume":"2","author":"MO Gewaltig","year":"2007","unstructured":"Gewaltig, M.O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)","journal-title":"Scholarpedia"},{"key":"4_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1093\/cercor\/1.1.1","volume":"1","author":"DJ Felleman","year":"1991","unstructured":"Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1\u201347 (1991)","journal-title":"Cereb. Cortex"},{"issue":"3","key":"4_CR18","doi-asserted-by":"publisher","first-page":"785","DOI":"10.1093\/cercor\/bhs358","volume":"24","author":"TC Potjans","year":"2014","unstructured":"Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24(3), 785\u2013806 (2014)","journal-title":"Cereb. Cortex"},{"issue":"9","key":"4_CR19","doi-asserted-by":"publisher","first-page":"e1004490","DOI":"10.1371\/journal.pcbi.1004490","volume":"11","author":"SJ van Albada","year":"2015","unstructured":"van Albada, S.J., Helias, M., Diesmann, M.: Scalability of asynchronous networks is limited by one-to-one mapping between effective connectivity and correlations. PLoS Comput. Biol. 11(9), e1004490 (2015)","journal-title":"PLoS Comput. Biol."},{"issue":"1","key":"4_CR20","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1140\/epjst\/e2010-01179-1","volume":"178","author":"M Rosvall","year":"2009","unstructured":"Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. Eur. Phys. J. Spec. Top. 178(1), 13\u201323 (2009)","journal-title":"Eur. Phys. J. Spec. Top."},{"issue":"1","key":"4_CR21","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1002\/cne.23458","volume":"522","author":"NT Markov","year":"2014","unstructured":"Markov, N.T., et al.: Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Compar. Neurol. 522(1), 225\u2013259 (2014)","journal-title":"J. Compar. Neurol."},{"issue":"6","key":"4_CR22","doi-asserted-by":"publisher","first-page":"1254","DOI":"10.1093\/cercor\/bhq201","volume":"21","author":"NT Markov","year":"2011","unstructured":"Markov, N.T., et al.: Weight consistency specifies regularities of macaque cortical networks. Cereb. Cortex 21(6), 1254\u20131272 (2011)","journal-title":"Cereb. Cortex"},{"issue":"1","key":"4_CR23","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1093\/cercor\/bhs270","volume":"24","author":"NT Markov","year":"2014","unstructured":"Markov, N.T., et al.: A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24(1), 17\u201336 (2014)","journal-title":"Cereb. Cortex"},{"issue":"4","key":"4_CR24","doi-asserted-by":"publisher","first-page":"905","DOI":"10.1162\/netn_a_00100","volume":"3","author":"CC Hilgetag","year":"2019","unstructured":"Hilgetag, C.C., Beul, S.F., van Albada, S.J., Goulas, A.: An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw. Neurosci. 3(4), 905\u2013923 (2019)","journal-title":"Netw. Neurosci."},{"issue":"2","key":"4_CR25","doi-asserted-by":"publisher","first-page":"e1005179","DOI":"10.1371\/journal.pcbi.1005179","volume":"13","author":"J Schuecker","year":"2017","unstructured":"Schuecker, J., Schmidt, M., van Albada, S.J., Diesmann, M., Helias, M.: Fundamental activity constraints lead to specific interpretations of the connectome. PLoS Comput. Biol. 13(2), e1005179 (2017)","journal-title":"PLoS Comput. Biol."},{"key":"4_CR26","doi-asserted-by":"publisher","first-page":"11","DOI":"10.3389\/fninf.2015.00011","volume":"9","author":"E Muller","year":"2015","unstructured":"Muller, E., Bednar, J.A., Diesmann, M., Gewaltig, M.O., Hines, M., Davison, A.P.: Python in neuroscience. Front. Neuroinform. 9, 11 (2015)","journal-title":"Front. Neuroinform."},{"issue":"19","key":"4_CR27","doi-asserted-by":"publisher","first-page":"2520","DOI":"10.1093\/bioinformatics\/bts480","volume":"28","author":"J K\u00f6ster","year":"2012","unstructured":"K\u00f6ster, J., Rahmann, S.: Snakemake\u2013a scalable bioinformatics workflow engine. Bioinformatics 28(19), 2520\u20132522 (2012)","journal-title":"Bioinformatics"},{"doi-asserted-by":"crossref","unstructured":"Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357\u2013362 (2020)","key":"4_CR28","DOI":"10.1038\/s41586-020-2649-2"},{"unstructured":"Peyser, A., et al.: NEST 2.14.0 (2017)","key":"4_CR29"},{"unstructured":"Evans, J.: Scalable memory allocation using jemalloc (2011). https:\/\/www.facebook.com\/notes\/facebook-engineering\/scalable-memory-allocation-using-jemalloc\/480222803919","key":"4_CR30"},{"key":"4_CR31","doi-asserted-by":"publisher","first-page":"30","DOI":"10.3389\/fninf.2017.00030","volume":"11","author":"T Ippen","year":"2017","unstructured":"Ippen, T., Eppler, J.M., Plesser, H.E., Diesmann, M.: Constructing neuronal network models in massively parallel environments. Front. Neuroinform. 11, 30 (2017)","journal-title":"Front. Neuroinform."},{"issue":"3","key":"4_CR32","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1023\/A:1008925309027","volume":"8","author":"N Brunel","year":"2000","unstructured":"Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8(3), 183\u2013208 (2000)","journal-title":"J. Comput. Neurosci."},{"key":"4_CR33","doi-asserted-by":"publisher","first-page":"26","DOI":"10.3389\/fninf.2012.00026","volume":"6","author":"M Helias","year":"2012","unstructured":"Helias, M., et al.: Supercomputers ready for use as discovery machines for neuroscience. Front. Neuroinform. 6, 26 (2012)","journal-title":"Front. Neuroinform."},{"key":"4_CR34","doi-asserted-by":"publisher","first-page":"78","DOI":"10.3389\/fninf.2014.00078","volume":"8","author":"S Kunkel","year":"2014","unstructured":"Kunkel, S., et al.: Spiking network simulation code for petascale computers. Front. Neuroinform. 8, 78 (2014)","journal-title":"Front. Neuroinform."},{"key":"4_CR35","doi-asserted-by":"publisher","first-page":"40","DOI":"10.3389\/fninf.2017.00040","volume":"11","author":"S Kunkel","year":"2017","unstructured":"Kunkel, S., Schenck, W.: The nest dry-run mode: efficient dynamic analysis of neuronal network simulation code. Front. Neuroinform. 11, 40 (2017)","journal-title":"Front. Neuroinform."},{"key":"4_CR36","doi-asserted-by":"publisher","first-page":"35","DOI":"10.3389\/fninf.2011.00035","volume":"5","author":"S Kunkel","year":"2012","unstructured":"Kunkel, S., Potjans, T.C., Eppler, J.M., Plesser, H.E., Morrison, A., Diesmann, M.: Meeting the memory challenges of brain-scale simulation. Front. Neuroinform. 5, 35 (2012)","journal-title":"Front. Neuroinform."},{"issue":"8","key":"4_CR37","doi-asserted-by":"publisher","first-page":"1776","DOI":"10.1162\/0899766054026648","volume":"17","author":"A Morrison","year":"2005","unstructured":"Morrison, A., Mehring, C., Geisel, T., Aertsen, A., Diesmann, M.: Advancing the boundaries of high connectivity network simulation with distributed computing. Neural Comput. 17(8), 1776\u20131801 (2005)","journal-title":"Neural Comput."},{"key":"4_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.conb.2013.09.009","volume":"25","author":"C Eliasmith","year":"2014","unstructured":"Eliasmith, C., Trujillo, O.: The use and abuse of large-scale brain models. Curr. Opin. Neurobiol. 25, 1\u20136 (2014)","journal-title":"Curr. Opin. Neurobiol."},{"issue":"6362","key":"4_CR39","doi-asserted-by":"publisher","first-page":"470","DOI":"10.1126\/science.aan8866","volume":"358","author":"Y Fr\u00e9gnac","year":"2017","unstructured":"Fr\u00e9gnac, Y.: Big data and the industrialization of neuroscience: a safe roadmap for understanding the brain? Science 358(6362), 470\u2013477 (2017)","journal-title":"Science"},{"issue":"9","key":"4_CR40","doi-asserted-by":"publisher","first-page":"566","DOI":"10.1038\/s41583-018-0038-8","volume":"19","author":"DS Bassett","year":"2018","unstructured":"Bassett, D.S., Zurn, P., Gold, J.I.: On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19(9), 566\u2013578 (2018)","journal-title":"Nat. Rev. Neurosci."},{"issue":"4","key":"4_CR41","doi-asserted-by":"publisher","first-page":"735","DOI":"10.1016\/j.neuron.2019.03.027","volume":"102","author":"GT Einevoll","year":"2019","unstructured":"Einevoll, G.T., et al.: The scientific case for brain simulations. Neuron 102(4), 735\u2013744 (2019)","journal-title":"Neuron"},{"issue":"3","key":"4_CR42","doi-asserted-by":"publisher","first-page":"641","DOI":"10.1093\/brain\/awx004","volume":"140","author":"T Proix","year":"2017","unstructured":"Proix, T., Bartolomei, F., Guye, M., Jirsa, V.K.: Individual brain structure and modelling predict seizure propagation. Brain 140(3), 641\u2013654 (2017)","journal-title":"Brain"},{"key":"4_CR43","doi-asserted-by":"publisher","first-page":"33","DOI":"10.3389\/fnsys.2019.00033","volume":"13","author":"E Pastorelli","year":"2019","unstructured":"Pastorelli, E., et al.: Newblock scaling of a large-scale simulation of synchronous slow-wave and asynchronous awake-like activity of a cortical model with long-range interconnections. Front. Syst. Neurosci. 13, 33 (2019)","journal-title":"Front. Syst. Neurosci."},{"key":"4_CR44","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/978-3-319-53862-4_21","volume-title":"High-Performance Scientific Computing","author":"J Senk","year":"2017","unstructured":"Senk, J., et al.: A collaborative simulation-analysis workflow for computational neuroscience using HPC. In: Di Napoli, Edoardo, Hermanns, Marc-Andr\u00e9., Iliev, Hristo, Lintermann, Andreas, Peyser, Alexander (eds.) JHPCS 2016. LNCS, vol. 10164, pp. 243\u2013256. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-53862-4_21"},{"issue":"5","key":"4_CR45","doi-asserted-by":"publisher","first-page":"859","DOI":"10.1016\/j.neuron.2011.11.006","volume":"72","author":"H Lind\u00e9n","year":"2011","unstructured":"Lind\u00e9n, H., et al.: Modeling the spatial reach of the LFP. Neuron 72(5), 859\u2013872 (2011)","journal-title":"Neuron"},{"doi-asserted-by":"crossref","unstructured":"Cain, N., Iyer, R., Koch, C., Mihalas, S.: The computational properties of a simplified cortical column model. PLoS Comput. Biol. 12(9) (2016)","key":"4_CR46","DOI":"10.1371\/journal.pcbi.1005045"},{"issue":"12","key":"4_CR47","doi-asserted-by":"publisher","first-page":"4461","DOI":"10.1093\/cercor\/bhw237","volume":"26","author":"E Hagen","year":"2016","unstructured":"Hagen, E., et al.: Hybrid scheme for modeling local field potentials from point-neuron networks. Cereb. Cortex 26(12), 4461\u20134496 (2016)","journal-title":"Cereb. Cortex"},{"issue":"4","key":"4_CR48","doi-asserted-by":"publisher","first-page":"e1005507","DOI":"10.1371\/journal.pcbi.1005507","volume":"13","author":"T Schwalger","year":"2017","unstructured":"Schwalger, T., Deger, M., Gerstner, W.: Towards a theory of cortical columns: from spiking neurons to interacting neural populations of finite size. PLoS Comput. Biol. 13(4), e1005507 (2017)","journal-title":"PLoS Comput. Biol."},{"unstructured":"Shimoura, R.O., et al.: [Re] the cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. ReScience 4(1) (2018)","key":"4_CR49"},{"key":"4_CR50","doi-asserted-by":"publisher","first-page":"291","DOI":"10.3389\/fnins.2018.00291","volume":"12","author":"SJ van Albada","year":"2018","unstructured":"van Albada, S.J., et al.: Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model. Front. Neurosci. 12, 291 (2018)","journal-title":"Front. Neurosci."},{"key":"4_CR51","doi-asserted-by":"publisher","first-page":"941","DOI":"10.3389\/fnins.2018.00941","volume":"12","author":"JC Knight","year":"2018","unstructured":"Knight, J.C., Nowotny, T.: GPUs outperform current HPC and neuromorphic solutions in terms of speed and energy when simulating a highly-connected cortical model. Front. Neurosci. 12, 941 (2018)","journal-title":"Front. Neurosci."},{"key":"4_CR52","doi-asserted-by":"publisher","first-page":"20190160","DOI":"10.1098\/rsta.2019.0160","volume":"378","author":"O Rhodes","year":"2019","unstructured":"Rhodes, O., et al.: Real-time cortical simulation on neuromorphic hardware. Phil. Trans. R. Soc. A 378, 20190160 (2019)","journal-title":"Phil. Trans. R. Soc. A"},{"issue":"2","key":"4_CR53","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1038\/s43588-020-00022-7","volume":"1","author":"JC Knight","year":"2021","unstructured":"Knight, J.C., Nowotny, T.: Larger GPU-accelerated brain simulations with procedural connectivity. Nat. Comput. Sci. 1(2), 136\u2013142 (2021)","journal-title":"Nat. Comput. Sci."}],"container-title":["Lecture Notes in Computer Science","Brain-Inspired Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-82427-3_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,20]],"date-time":"2021-07-20T03:12:36Z","timestamp":1626750756000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-82427-3_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030824266","9783030824273"],"references-count":53,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-82427-3_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"21 July 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BrainComp","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Brain-Inspired Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cetraro","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 July 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 July 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"braincomp2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.fz-juelich.de\/inm\/inm-1\/EN\/Aktuelles\/BrainComp2019\/_node.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}