{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T18:30:09Z","timestamp":1743013809778,"version":"3.40.3"},"publisher-location":"Cham","reference-count":15,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030821357"},{"type":"electronic","value":"9783030821364"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-82136-4_53","type":"book-chapter","created":{"date-parts":[[2021,8,6]],"date-time":"2021-08-06T23:26:36Z","timestamp":1628292396000},"page":"656-665","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Predicting User Preferences via Heterogeneous Information Network and Metric Learning"],"prefix":"10.1007","author":[{"given":"Xiaotong","family":"Li","sequence":"first","affiliation":[]},{"given":"Yan","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Yuan","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Yingpei","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,8,7]]},"reference":[{"issue":"1","key":"53_CR1","first-page":"17","volume":"29","author":"C Shi","year":"2016","unstructured":"Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network analysis. TKDE 29(1), 17\u201337 (2016)","journal-title":"TKDE"},{"key":"53_CR2","doi-asserted-by":"crossref","unstructured":"Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: SIGKDD, pp. 135\u2013144. ACM (2017)","DOI":"10.1145\/3097983.3098036"},{"key":"53_CR3","doi-asserted-by":"crossref","unstructured":"Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: RecSys, pp. 135\u2013142. ACM (2010)","DOI":"10.1145\/1864708.1864736"},{"key":"53_CR4","doi-asserted-by":"crossref","unstructured":"Park, C., Kim, D., Xie, X., Yu, H.: Collaborative translational metric learning. In: ICDM, pp. 367\u2013376 (2018)","DOI":"10.1109\/ICDM.2018.00052"},{"issue":"2","key":"53_CR5","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1109\/TKDE.2018.2833443","volume":"31","author":"C Shi","year":"2019","unstructured":"Shi, C., Hu, B., Zhao, W.X., Yu, P.S.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357\u2013370 (2019)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"11","key":"53_CR6","first-page":"992","volume":"4","author":"Y Sun","year":"2011","unstructured":"Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k similarity search in heterogeneous information networks. PVLDB 4(11), 992\u20131003 (2011)","journal-title":"PVLDB"},{"key":"53_CR7","doi-asserted-by":"crossref","unstructured":"Li, W., et al.: Social recommendation using Euclidean embedding. In: IJCNN, pp. 589\u2013595 (2017)","DOI":"10.1109\/IJCNN.2017.7965906"},{"key":"53_CR8","doi-asserted-by":"crossref","unstructured":"Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: KDD, pp. 855\u2013864. ACM (2016)","DOI":"10.1145\/2939672.2939754"},{"key":"53_CR9","unstructured":"Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS (2013)"},{"key":"53_CR10","unstructured":"Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in neural information processing systems, pp. 1257\u20131264 (2008)"},{"issue":"17","key":"53_CR11","first-page":"1","volume":"2021","author":"Y Yin","year":"2021","unstructured":"Yin, Y., Zheng, W.: An efficient recommendation algorithm based on heterogeneous information network. Complexity 2021(17), 1\u201318 (2021)","journal-title":"Complexity"},{"issue":"2","key":"53_CR12","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1109\/TSUSC.2017.2723954","volume":"3","author":"K Gai","year":"2017","unstructured":"Gai, K., Qiu, M., Zhao, H., Sun, X.: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing. IEEE Trans. Sustain. Comput. 3(2), 60\u201372 (2017)","journal-title":"IEEE Trans. Sustain. Comput."},{"issue":"4","key":"53_CR13","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1109\/MNET.2018.1700407","volume":"32","author":"K Gai","year":"2018","unstructured":"Gai, K., Qiu, M.: Reinforcement learning-based content-centric services in mobile sensing. IEEE Netw. 32(4), 34\u201339 (2018)","journal-title":"IEEE Netw."},{"key":"53_CR14","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1016\/j.asoc.2018.03.056","volume":"70","author":"K Gai","year":"2018","unstructured":"Gai, K., Qiu, M.: Optimal resource allocation using reinforcement learning for IoT content-centric services. Appl. Soft Comput. 70, 12\u201321 (2018)","journal-title":"Appl. Soft Comput."},{"key":"53_CR15","doi-asserted-by":"publisher","first-page":"21557","DOI":"10.1109\/ACCESS.2017.2762459","volume":"5","author":"J Yu","year":"2017","unstructured":"Yu, J., Min, G., Rong, W., Song, Y., Xiong, Q.: A social recommender based on factorization and distance metric learning. IEEE Access 5, 21557\u201321566 (2017)","journal-title":"IEEE Access"}],"container-title":["Lecture Notes in Computer Science","Knowledge Science, Engineering and Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-82136-4_53","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,8,6]],"date-time":"2021-08-06T23:41:08Z","timestamp":1628293268000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-82136-4_53"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030821357","9783030821364"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-82136-4_53","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 August 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KSEM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Knowledge Science, Engineering and Management","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tokyo","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 August 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 August 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ksem2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.cloud-conf.net\/ksem21\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"492","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"164","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}