{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T08:45:17Z","timestamp":1726130717582},"publisher-location":"Cham","reference-count":50,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030820169"},{"type":"electronic","value":"9783030820176"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-82017-6_5","type":"book-chapter","created":{"date-parts":[[2021,7,16]],"date-time":"2021-07-16T05:03:16Z","timestamp":1626411796000},"page":"63-82","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Shallow2Deep: Restraining Neural Networks Opacity Through Neural Architecture Search"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0531-1978","authenticated-orcid":false,"given":"Andrea","family":"Agiollo","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1841-8996","authenticated-orcid":false,"given":"Giovanni","family":"Ciatto","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6655-3869","authenticated-orcid":false,"given":"Andrea","family":"Omicini","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,7,17]]},"reference":[{"doi-asserted-by":"publisher","unstructured":"Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138\u201352160 (2018). https:\/\/doi.org\/10.1109\/ACCESS.2018.2870052","key":"5_CR1","DOI":"10.1109\/ACCESS.2018.2870052"},{"doi-asserted-by":"publisher","unstructured":"Bach, S., Binder, A., Montavon, G., Klauschen, F., M\u00fcller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1\u201346 (2015). https:\/\/doi.org\/10.1371\/journal.pone.0130140","key":"5_CR2","DOI":"10.1371\/journal.pone.0130140"},{"doi-asserted-by":"publisher","unstructured":"Arrieta, A.B., et al.: Explainable explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58(December 2019), 82\u2013115 (2020). https:\/\/doi.org\/10.1016\/j.inffus.2019.12.012","key":"5_CR3","DOI":"10.1016\/j.inffus.2019.12.012"},{"doi-asserted-by":"publisher","unstructured":"Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21\u201326 July 2017, pp. 3319\u20133327. IEEE Computer Society (2017). https:\/\/doi.org\/10.1109\/CVPR.2017.354","key":"5_CR4","DOI":"10.1109\/CVPR.2017.354"},{"unstructured":"Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6\u20139 May 2019. OpenReview.net (2019). https:\/\/openreview.net\/forum?id=HylVB3AqYm","key":"5_CR5"},{"doi-asserted-by":"publisher","unstructured":"Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-symbolic techniques for XAI: a survey. Intelligenza Artificiale 14(1), 7\u201332 (2020). https:\/\/doi.org\/10.3233\/IA-190036","key":"5_CR6","DOI":"10.3233\/IA-190036"},{"unstructured":"Casale, F.P., Gordon, J., Fusi, N.: Probabilistic neural architecture search. CoRR abs\/1902.05116 (2019). http:\/\/arxiv.org\/abs\/1902.05116","key":"5_CR7"},{"doi-asserted-by":"publisher","unstructured":"Chen, S., Bateni, S., Grandhi, S., Li, X., Liu, C., Yang, W.: DENAS: automated rule generation by knowledge extraction from neural networks. In: Devanbu, P., Cohen, M.B., Zimmermann, T. (eds.) ESEC\/FSE 2020: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA, 8\u201313 November 2020, pp. 813\u2013825. ACM (2020). https:\/\/doi.org\/10.1145\/3368089.3409733","key":"5_CR8","DOI":"10.1145\/3368089.3409733"},{"key":"5_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1007\/978-3-030-66823-5_6","volume-title":"Computer Vision \u2013 ECCV 2020 Workshops","author":"X Chu","year":"2020","unstructured":"Chu, X., Zhang, B., Xu, R.: Multi-objective reinforced evolution in mobile neural architecture search. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 99\u2013113. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-66823-5_6"},{"key":"5_CR10","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-51924-7_1","volume-title":"Explainable, Transparent Autonomous Agents and Multi-Agent Systems","author":"G Ciatto","year":"2020","unstructured":"Ciatto, G., Schumacher, M.I., Omicini, A., Calvaresi, D.: Agent-based explanations in AI: towards an abstract framework. In: Calvaresi, D., Najjar, A., Winikoff, M., Fr\u00e4mling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 3\u201320. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-51924-7_1"},{"doi-asserted-by":"publisher","unstructured":"Dosilovic, F.K., Brcic, M., Hlupic, N.: Explainable artificial intelligence: a survey. In: Skala, K., et al. (eds.) 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018, Opatija, Croatia, 21\u201325 May 2018, pp. 210\u2013215. IEEE (2018). https:\/\/doi.org\/10.23919\/MIPRO.2018.8400040","key":"5_CR11","DOI":"10.23919\/MIPRO.2018.8400040"},{"unstructured":"Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20, 55:1\u201355:21 (2019). http:\/\/jmlr.org\/papers\/v20\/18-598.html","key":"5_CR12"},{"key":"5_CR13","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1007\/978-3-319-54220-1_8","volume-title":"Pattern Recognition and Information Processing","author":"V Golovko","year":"2017","unstructured":"Golovko, V., Egor, M., Brich, A., Sachenko, A.: A shallow convolutional neural network for accurate handwritten digits classification. In: Krasnoproshin, V.V., Ablameyko, S.V. (eds.) PRIP 2016. CCIS, vol. 673, pp. 77\u201385. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-54220-1_8"},{"doi-asserted-by":"publisher","unstructured":"Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Computi. Surv. 51(5) (2018). https:\/\/doi.org\/10.1145\/3236009","key":"5_CR14","DOI":"10.1145\/3236009"},{"doi-asserted-by":"publisher","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27\u201330 June 2016, pp. 770\u2013778. IEEE Computer Society (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.90","key":"5_CR15","DOI":"10.1109\/CVPR.2016.90"},{"doi-asserted-by":"publisher","unstructured":"Hecht-Nielsen, R.: Theory of the backpropagation neural network. Neural Netw. 1(Supplement-1), 445\u2013448 (1988). https:\/\/doi.org\/10.1016\/0893-6080(88)90469-8","key":"5_CR16","DOI":"10.1016\/0893-6080(88)90469-8"},{"unstructured":"Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR abs\/1704.04861 (2017). http:\/\/arxiv.org\/abs\/1704.04861","key":"5_CR17"},{"unstructured":"Janzing, D., Minorics, L., Bl\u00f6baum, P.: Feature relevance quantification in explainable AI: a causal problem. In: Chiappa, S., Calandra, R. (eds.) The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020). Proceedings of Machine Learning Research, vol. 108, pp. 2907\u20132916 (2020). http:\/\/proceedings.mlr.press\/v108\/janzing20a.html","key":"5_CR18"},{"unstructured":"Kaya, Y., Hong, S., Dumitras, T.: Shallow-deep networks: understanding and mitigating network overthinking. In: Chaudhuri, K., Salakhutdinov, R. (eds.) 36th International Conference on Machine Learning, ICML 2019, 9\u201315 June 2019, Long Beach, CA, USA. Proceedings of Machine Learning Research, vol. 97, pp. 3301\u20133310 (2019). http:\/\/proceedings.mlr.press\/v97\/kaya19a.html","key":"5_CR19"},{"doi-asserted-by":"publisher","unstructured":"Li, J., Liang, X., Shen, S., Xu, T., Feng, J., Yan, S.: Scale-aware fast R-CNN for pedestrian detection. IEEE Trans. Multimedia 20(4), 985\u2013996 (2018). https:\/\/doi.org\/10.1109\/TMM.2017.2759508","key":"5_CR20","DOI":"10.1109\/TMM.2017.2759508"},{"doi-asserted-by":"publisher","unstructured":"Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31\u201357 (2018). https:\/\/doi.org\/10.1145\/3236386.3241340","key":"5_CR21","DOI":"10.1145\/3236386.3241340"},{"key":"5_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1007\/978-3-030-01246-5_2","volume-title":"Computer Vision \u2013 ECCV 2018","author":"C Liu","year":"2018","unstructured":"Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19\u201335. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01246-5_2"},{"unstructured":"Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6\u20139 May 2019. OpenReview.net (2019). https:\/\/openreview.net\/forum?id=S1eYHoC5FX","key":"5_CR23"},{"unstructured":"Liu, J., Tripathi, S., Kurup, U., Shah, M.: Pruning algorithms to accelerate convolutional neural networks for edge applications: a survey. CoRR abs\/2005.04275 (2020). https:\/\/arxiv.org\/abs\/2005.04275","key":"5_CR24"},{"unstructured":"Luo, R., Tan, X., Wang, R., Qin, T., Chen, E., Liu, T.: Neural architecture search with GBDT. CoRR abs\/2007.04785 (2020). https:\/\/arxiv.org\/abs\/2007.04785","key":"5_CR25"},{"unstructured":"Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algorithms. In: Schaffer, J.D. (ed.) 3rd International Conference on Genetic Algorithms, Fairfax, VA, USA, pp. 379\u2013384. Morgan Kaufmann, June 1989","key":"5_CR26"},{"doi-asserted-by":"publisher","unstructured":"Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27\u201330 June 2016, pp. 4293\u20134302. IEEE Computer Society (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.465","key":"5_CR27","DOI":"10.1109\/CVPR.2016.465"},{"unstructured":"Nguyen, A.M., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5\u201310 December 2016, pp. 3387\u20133395 (2016). https:\/\/proceedings.neurips.cc\/paper\/2016\/hash\/5d79099fcdf499f12b79770834c0164a-Abstract.html","key":"5_CR28"},{"unstructured":"Nguyen, A.M., Yosinski, J., Clune, J.: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. CoRR abs\/1602.03616 (2016). http:\/\/arxiv.org\/abs\/1602.03616","key":"5_CR29"},{"unstructured":"O\u2019Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR abs\/1511.08458 (2015). http:\/\/arxiv.org\/abs\/1511.08458","key":"5_CR30"},{"doi-asserted-by":"publisher","unstructured":"Peng, S., Ji, F., Lin, Z., Cui, S., Chen, H., Zhang, Y.: MTSS: learn from multiple domain teachers and become a multi-domain dialogue expert. In: AAAI Conference on Artificial Intelligence (AAAI-20 Technical Tracks 5), vol. 34, pp. 8608\u20138615. AAAI Press (2020). https:\/\/doi.org\/10.1609\/aaai.v34i05.6384","key":"5_CR31","DOI":"10.1609\/aaai.v34i05.6384"},{"doi-asserted-by":"publisher","unstructured":"Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI Conference on Artificial Intelligence (AAAI-19, IAAI-19, EAAI-20), vol. 33, pp. 4780\u20134789. AAAI Press (2019). https:\/\/doi.org\/10.1609\/aaai.v33i01.33014780","key":"5_CR32","DOI":"10.1609\/aaai.v33i01.33014780"},{"doi-asserted-by":"publisher","unstructured":"Ren, S., He, K., Girshick, R.B., Zhang, X., Sun, J.: Object detection networks on convolutional feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1476\u20131481 (2017). https:\/\/doi.org\/10.1109\/TPAMI.2016.2601099","key":"5_CR33","DOI":"10.1109\/TPAMI.2016.2601099"},{"unstructured":"Rolnick, D., Tegmark, M.: The power of deeper networks for expressing natural functions. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April\u2013 3 May 2018, Conference Track Proceedings. OpenReview.net (2018). https:\/\/openreview.net\/forum?id=SyProzZAW","key":"5_CR34"},{"doi-asserted-by":"publisher","unstructured":"Samek, W., Binder, A., Montavon, G., Lapuschkin, S., M\u00fcller, K.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Networks Learn. Syst. 28(11), 2660\u20132673 (2017). https:\/\/doi.org\/10.1109\/TNNLS.2016.2599820","key":"5_CR35","DOI":"10.1109\/TNNLS.2016.2599820"},{"doi-asserted-by":"publisher","unstructured":"Setiono, R., Leow, W.K., Zurada, J.M.: Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans. Neural Netw. 13(3), 564\u2013577 (2002). https:\/\/doi.org\/10.1109\/TNN.2002.1000125","key":"5_CR36","DOI":"10.1109\/TNN.2002.1000125"},{"unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7\u20139 May 2015, Conference Track Proceedings (2015). http:\/\/arxiv.org\/abs\/1409.1556","key":"5_CR37"},{"doi-asserted-by":"publisher","unstructured":"Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16\u201320 June 2019, pp. 2820\u20132828. Computer Vision Foundation\/IEEE (2019). https:\/\/doi.org\/10.1109\/CVPR.2019.00293","key":"5_CR38","DOI":"10.1109\/CVPR.2019.00293"},{"unstructured":"Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. CoRR abs\/1905.11946 (2019). http:\/\/arxiv.org\/abs\/1905.11946","key":"5_CR39"},{"unstructured":"Thrun, S.: Extracting rules from artificial neural networks with distributed representations. In: 7th International Conference on Neural Information Processing Systems (NIPS 1994), pp. 505\u2013512. MIT Press (1994)","key":"5_CR40"},{"unstructured":"Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): towards medical XAI. CoRR abs\/1907.07374 (2019). http:\/\/arxiv.org\/abs\/1907.07374","key":"5_CR41"},{"unstructured":"Wistuba, M., Rawat, A., Pedapati, T.: A survey on neural architecture search. CoRR abs\/1905.01392 (2019). http:\/\/arxiv.org\/abs\/1905.01392","key":"5_CR42"},{"doi-asserted-by":"publisher","unstructured":"Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16\u201320 June 2019, pp. 10734\u201310742. Computer Vision Foundation\/IEEE (2019). https:\/\/doi.org\/10.1109\/CVPR.2019.01099","key":"5_CR43","DOI":"10.1109\/CVPR.2019.01099"},{"unstructured":"Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs\/1708.07747 (2017). http:\/\/arxiv.org\/abs\/1708.07747","key":"5_CR44"},{"doi-asserted-by":"publisher","unstructured":"Yang, Z., et al.: CARS: continuous evolution for efficient neural architecture search. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13\u201319 June 2020, pp. 1826\u20131835. IEEE (2020). https:\/\/doi.org\/10.1109\/CVPR42600.2020.00190","key":"5_CR45","DOI":"10.1109\/CVPR42600.2020.00190"},{"unstructured":"Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-101: towards reproducible neural architecture search. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, California, USA, 9\u201315 June 2019. Proceedings of Machine Learning Research, vol. 97, pp. 7105\u20137114. PMLR (2019). http:\/\/proceedings.mlr.press\/v97\/ying19a.html","key":"5_CR46"},{"unstructured":"Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neural networks through deep visualization. CoRR abs\/1506.06579 (2015). http:\/\/arxiv.org\/abs\/1506.06579","key":"5_CR47"},{"doi-asserted-by":"publisher","unstructured":"Zhang, Q., Wu, Y.N., Zhu, S.: Interpretable convolutional neural networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18\u201322 June 2018. pp. 8827\u20138836. IEEE Computer Society (2018). https:\/\/doi.org\/10.1109\/CVPR.2018.00920","key":"5_CR48","DOI":"10.1109\/CVPR.2018.00920"},{"doi-asserted-by":"publisher","unstructured":"Zhang, Q., Yang, Y., Ma, H., Wu, Y.N.: Interpreting CNNs via decision trees. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16\u201320 June 2019, pp. 6261\u20136270. Computer Vision Foundation\/IEEE (2019). https:\/\/doi.org\/10.1109\/CVPR.2019.00642","key":"5_CR49","DOI":"10.1109\/CVPR.2019.00642"},{"unstructured":"Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations (ICLR 2017). Toulon, France, 24\u201326 April 2017. https:\/\/openreview.net\/forum?id=r1Ue8Hcxg","key":"5_CR50"}],"container-title":["Lecture Notes in Computer Science","Explainable and Transparent AI and Multi-Agent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-82017-6_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,16]],"date-time":"2021-07-16T05:06:29Z","timestamp":1626411989000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-82017-6_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030820169","9783030820176"],"references-count":50,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-82017-6_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"17 July 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EXTRAAMAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 May 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 May 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"extraamas2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/extraamas.ehealth.hevs.ch\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"19","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}