{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T12:41:22Z","timestamp":1726144882561},"publisher-location":"Cham","reference-count":51,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030814618"},{"type":"electronic","value":"9783030814625"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-81462-5_29","type":"book-chapter","created":{"date-parts":[[2021,10,22]],"date-time":"2021-10-22T11:10:42Z","timestamp":1634901042000},"page":"317-326","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["An Ensemble Learning Approach for Software Defect Prediction in Developing Quality Software Product"],"prefix":"10.1007","author":[{"given":"Yakub Kayode","family":"Saheed","sequence":"first","affiliation":[]},{"given":"Olumide","family":"Longe","sequence":"additional","affiliation":[]},{"given":"Usman Ahmad","family":"Baba","sequence":"additional","affiliation":[]},{"given":"Sandip","family":"Rakshit","sequence":"additional","affiliation":[]},{"given":"Narasimha Rao","family":"Vajjhala","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,10,23]]},"reference":[{"issue":"5","key":"29_CR1","doi-asserted-by":"publisher","first-page":"1745","DOI":"10.3390\/app10051745","volume":"10","author":"H Alsawalqah","year":"2020","unstructured":"Alsawalqah, H., et al.: Software defect prediction using heterogeneous ensemble classification based on segmented patterns. Appl. Sci. 10(5), 1745 (2020)","journal-title":"Appl. Sci."},{"key":"29_CR2","unstructured":"Bhattacharya, P., et al.: Graph-based analysis and prediction for software evolution, pp. 419\u2013429"},{"key":"29_CR3","unstructured":"Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction, pp. 181\u2013190"},{"key":"29_CR4","doi-asserted-by":"crossref","unstructured":"Abaei, G., Selamat, A.: A survey on software fault detection based on different prediction approaches. Vietnam J. Comput. Sci. 1(2), 79\u201395 (2014)","DOI":"10.1007\/s40595-013-0008-z"},{"key":"29_CR5","doi-asserted-by":"crossref","unstructured":"Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect prediction. In: Proceedings of the 38th International Conference on Software Engineering, Austin, Texas, pp. 297\u2013308 (2016)","DOI":"10.1145\/2884781.2884804"},{"issue":"6","key":"29_CR6","doi-asserted-by":"publisher","first-page":"1276","DOI":"10.1109\/TSE.2011.103","volume":"38","author":"T Hall","year":"2012","unstructured":"Hall, T., et al.: A systematic literature review on fault prediction performance in software engineering. IEEE Trans. Software Eng. 38(6), 1276\u20131304 (2012)","journal-title":"IEEE Trans. Software Eng."},{"key":"29_CR7","doi-asserted-by":"crossref","unstructured":"Menzies, T., et al.: Defect prediction from static code features: current\u00a0results, limitations, new approaches. Automated Softw. Eng. 17(4), 375\u2013407 (2010)","DOI":"10.1007\/s10515-010-0069-5"},{"key":"29_CR8","unstructured":"Li, Z., Reformat, M.: A practical method for the software fault-prediction, pp. 659\u2013666"},{"key":"29_CR9","doi-asserted-by":"crossref","unstructured":"Vandecruys, O., et al.: Mining software repositories for comprehensible software fault prediction models. J. Syst. Softw. 81(5), 823\u2013839 (2008)","DOI":"10.1016\/j.jss.2007.07.034"},{"key":"29_CR10","doi-asserted-by":"crossref","unstructured":"Mendes-Moreira, J., et al.: Ensemble approaches for regression: a survey. ACM Comput. Surv. 45(1), (2012). Article 10","DOI":"10.1145\/2379776.2379786"},{"key":"29_CR11","unstructured":"Rathore, S.S., Kuamr, S.: Comparative analysis of neural network and genetic programming for number of software faults prediction, pp. 328\u2013332"},{"key":"29_CR12","doi-asserted-by":"crossref","unstructured":"Rathore, S.S., Kumar, S.: Linear and non-linear heterogeneous ensemble methods to predict the number of faults in software systems. Knowl. Based Syst. 119, 232\u2013256, (2017)","DOI":"10.1016\/j.knosys.2016.12.017"},{"key":"29_CR13","doi-asserted-by":"crossref","unstructured":"Shatnawi, R., Li, W.: The effectiveness of software metrics in identifying error-prone classes in post-release software evolution process. J. Syst. Softw. 81(11), 1868\u20131882 (2008)","DOI":"10.1016\/j.jss.2007.12.794"},{"issue":"2","key":"29_CR14","doi-asserted-by":"publisher","first-page":"525","DOI":"10.1007\/s11219-016-9353-3","volume":"26","author":"D Bowes","year":"2017","unstructured":"Bowes, D., Hall, T., Petri\u0107, J.: Software defect prediction: do different classifiers find the same defects? Software Qual. J. 26(2), 525\u2013552 (2017). https:\/\/doi.org\/10.1007\/s11219-016-9353-3","journal-title":"Software Qual. J."},{"key":"29_CR15","unstructured":"Rawat, M., Dubey, S.: Software defect prediction models for quality improvement: a literature study. Int. J. Comput. Sci. Issues 9, 288\u2013296 (2012)"},{"key":"29_CR16","unstructured":"Singh, P.D., Chug, A.: Software defect prediction analysis using machine learning algorithms, pp. 775\u2013781"},{"key":"29_CR17","unstructured":"Ge, J., Liu, J., Liu, W.: Comparative study on defect prediction algorithms of supervised learning software based on imbalanced classification data sets, pp. 399\u2013406"},{"issue":"12","key":"29_CR18","doi-asserted-by":"publisher","first-page":"1253","DOI":"10.1109\/TSE.2018.2836442","volume":"45","author":"Q Song","year":"2019","unstructured":"Song, Q., Guo, Y., Shepperd, M.: A Comprehensive investigation of the role of imbalanced learning for software defect prediction. IEEE Trans. Softw. Eng. 45(12), 1253\u20131269 (2019)","journal-title":"IEEE Trans. Softw. Eng."},{"key":"29_CR19","doi-asserted-by":"crossref","unstructured":"Chang, R., Mu, X., Zhang, L.: Software defect prediction using non-negative matrix factorization. JSW 6, 2114\u20132120 (2011)","DOI":"10.4304\/jsw.6.11.2114-2120"},{"key":"29_CR20","doi-asserted-by":"crossref","unstructured":"Wahono, R., Suryana, N., Ahmad, S.: Metaheuristic optimization based feature selection for software defect prediction. J. Softw. 9, 1324\u20131333 (2014)","DOI":"10.4304\/jsw.9.5.1324-1333"},{"key":"29_CR21","doi-asserted-by":"crossref","unstructured":"Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support vector machines. J. Syst. Softw. 81(5), 649\u2013660 (2008)","DOI":"10.1016\/j.jss.2007.07.040"},{"key":"29_CR22","doi-asserted-by":"crossref","unstructured":"Gray, D., et al.: Using the support vector machine as a classification method for software defect prediction with static code metrics, pp. 223\u2013234","DOI":"10.1007\/978-3-642-03969-0_21"},{"key":"29_CR23","unstructured":"Gong, L., et al.: Empirical evaluation of the impact of class overlap on software defect prediction, pp. 698\u2013709"},{"key":"29_CR24","doi-asserted-by":"crossref","unstructured":"Mabayoje, M., et al.: Parameter tuning in KNN for software defect prediction: an empirical analysis. Jurnal Teknologi dan Sistem Komputer 7, 121\u2013126 (2019)","DOI":"10.14710\/jtsiskom.7.4.2019.121-126"},{"key":"29_CR25","unstructured":"Tong-Seng, Q., Mie Mie Thet, T.: Application of neural networks for software quality prediction using object-oriented metrics, pp. 116\u2013125"},{"key":"29_CR26","doi-asserted-by":"crossref","unstructured":"Thwin, M.M.T., Quah, T.-S.: Application of neural networks for software quality prediction using object-oriented metrics. J. Syst. Softw. 76(2), 147\u2013156 (2005)","DOI":"10.1016\/j.jss.2004.05.001"},{"issue":"9","key":"29_CR27","doi-asserted-by":"publisher","first-page":"635","DOI":"10.1109\/TSE.2007.70706","volume":"33","author":"H Zhang","year":"2007","unstructured":"Zhang, H., Zhang, X.: Comments on \u201cdata mining static code attributes to learn defect predictors.\u201d IEEE Trans. Softw. Eng. 33(9), 635\u2013637 (2007)","journal-title":"IEEE Trans. Softw. Eng."},{"issue":"2","key":"29_CR28","doi-asserted-by":"publisher","first-page":"779","DOI":"10.1007\/s10664-018-9638-1","volume":"24","author":"T Mori","year":"2018","unstructured":"Mori, T., Uchihira, N.: Balancing the trade-off between accuracy and interpretability in software defect prediction. Empir. Softw. Eng. 24(2), 779\u2013825 (2018). https:\/\/doi.org\/10.1007\/s10664-018-9638-1","journal-title":"Empir. Softw. Eng."},{"key":"29_CR29","doi-asserted-by":"crossref","unstructured":"Ramler, R., et al.: Key questions in building defect prediction models in practice, pp. 14\u201327","DOI":"10.1007\/978-3-642-02152-7_3"},{"key":"29_CR30","unstructured":"Gayatri, N., Savarimuthu, N., Reddy, A.: Feature selection using decision tree induction in class level metrics dataset for software defect predictions, Lecture Notes in Engineering and Computer Science, vol. 1 (2010)"},{"key":"29_CR31","unstructured":"Pelayo, L., Dick, S.: Applying novel resampling strategies to software defect prediction, pp. 69\u201372"},{"key":"29_CR32","doi-asserted-by":"crossref","unstructured":"Czibula, G., Marian, Z., Czibula, I.G.: Software defect prediction using relational association rule mining. Inf. Sci. 264, 260\u2013278 (2014)","DOI":"10.1016\/j.ins.2013.12.031"},{"key":"29_CR33","doi-asserted-by":"crossref","unstructured":"Catal, C., Diri, B.: Software fault prediction with object-oriented metrics based artificial immune recognition system, pp. 300\u2013314","DOI":"10.1007\/978-3-540-73460-4_27"},{"key":"29_CR34","unstructured":"Aida, E., Nima Karimpour, D.: CBM-Of-TRaCE: an ontology-driven framework for the improvement of business service traceability, consistency management and reusability. Int. J. Soft Comput. Softw. Eng. [JSCSE], pp. 69\u201378"},{"key":"29_CR35","doi-asserted-by":"crossref","unstructured":"Moustafa, S., et al.: Software bug prediction using weighted majority voting techniques. Alexandria Eng. J. 57(4), 2763\u20132774 (2018)","DOI":"10.1016\/j.aej.2018.01.003"},{"key":"29_CR36","doi-asserted-by":"crossref","unstructured":"Mousavi, R., Eftekhari, M., Rahdari, F.: Omni-ensemble learning (OEL): utilizing over-bagging, static and dynamic ensemble selection approaches for software defect prediction. Int. J. Artif. Intell. Tools 27(06), 1850024 (2018)","DOI":"10.1142\/S0218213018500240"},{"key":"29_CR37","doi-asserted-by":"crossref","unstructured":"Tanwar, H., Kakkar, M.: A review of software defect prediction models. In: Proceedings of ICDMAI 2018, vol. 1, pp. 89\u201397 (2019)","DOI":"10.1007\/978-981-13-1402-5_7"},{"key":"29_CR38","unstructured":"Ibrahim, D.R., Ghnemat, R., Hudaib, A.: Software defect prediction using feature selection and random forest algorithm, pp. 252\u2013257"},{"key":"29_CR39","doi-asserted-by":"crossref","unstructured":"Cai, X., et al.: An under-sampled software defect prediction method based on hybrid multi-objective cuckoo search. Concurr. Comput. Pract. Exp. 32(5), e5478 (2020)","DOI":"10.1002\/cpe.5478"},{"issue":"1","key":"29_CR40","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1007\/s10586-018-1730-1","volume":"22","author":"R Jayanthi","year":"2018","unstructured":"Jayanthi, R., Florence, L.: Software defect prediction techniques using metrics based on neural network classifier. Clust. Comput. 22(1), 77\u201388 (2018). https:\/\/doi.org\/10.1007\/s10586-018-1730-1","journal-title":"Clust. Comput."},{"issue":"4","key":"29_CR41","doi-asserted-by":"publisher","first-page":"9847","DOI":"10.1007\/s10586-018-1696-z","volume":"22","author":"C Manjula","year":"2018","unstructured":"Manjula, C., Florence, L.: Deep neural network based hybrid approach for software defect prediction using software metrics. Clust. Comput. 22(4), 9847\u20139863 (2018). https:\/\/doi.org\/10.1007\/s10586-018-1696-z","journal-title":"Clust. Comput."},{"key":"29_CR42","doi-asserted-by":"crossref","unstructured":"Challagulla, V.U.B., et al.: Empirical assessment of machine learning based software defect prediction techniques. Int. J. Artif. Intell. Tools 17(02), 389\u2013400 (2008)","DOI":"10.1142\/S0218213008003947"},{"issue":"1","key":"29_CR43","first-page":"19","volume":"15","author":"X Rong","year":"2016","unstructured":"Rong, X., Li, F., Cui, Z.: A model for software defect prediction using support vector machine based on CBA. Int. J. Intell. Syst. Technol. Appl. 15(1), 19\u201334 (2016)","journal-title":"Int. J. Intell. Syst. Technol. Appl."},{"key":"29_CR44","doi-asserted-by":"crossref","unstructured":"Magal. K.R., Jacob, S.: Improved random forest algorithm for software defect prediction through data mining techniques. Int. J. Comput. Appl. 117, 18\u201322 (2015)","DOI":"10.5120\/20693-3582"},{"key":"29_CR45","doi-asserted-by":"crossref","unstructured":"Aquil, M.A.I., Wan Ishak, W.H.: Predicting software defects using machine learning techniques. Int. J. Adv. Trends Comput. Sci. Eng. 9, 6609 (2020)","DOI":"10.30534\/ijatcse\/2020\/352942020"},{"key":"29_CR46","doi-asserted-by":"crossref","unstructured":"Aljamaan, H., Alazba, A.: Software defect prediction using tree-based ensembles. In: Proceedings of the 16th ACM International Conference on Predictive Models and Data Analytics in Software Engineering, pp. 1\u201310. Association for Computing Machinery (2020)","DOI":"10.1145\/3416508.3417114"},{"issue":"9","key":"29_CR47","doi-asserted-by":"publisher","first-page":"1208","DOI":"10.1109\/TSE.2013.11","volume":"39","author":"M Shepperd","year":"2013","unstructured":"Shepperd, M., et al.: Data quality: some comments on the NASA software defect datasets. IEEE Trans. Softw. Eng. 39(9), 1208\u20131215 (2013)","journal-title":"IEEE Trans. Softw. Eng."},{"key":"29_CR48","doi-asserted-by":"crossref","unstructured":"Deng, K., et al.: A remaining useful life prediction method with long-short term feature processing for aircraft engines. Appl. Soft Comput. 93, 106344 (2020)","DOI":"10.1016\/j.asoc.2020.106344"},{"key":"29_CR49","unstructured":"Dorogush, A., Ershov, V., Gulin, A.: CatBoost: gradient boosting with categorical features support (2018)"},{"issue":"4","key":"29_CR50","doi-asserted-by":"publisher","first-page":"48","DOI":"10.4018\/IJeC.2020100104","volume":"16","author":"G Kavitha","year":"2020","unstructured":"Kavitha, G., Elango, N.M.: An approach to feature selection in intrusion detection systems using machine learning algorithms. Int. J. e-Collaboration (IJeC) 16(4), 48\u201358 (2020)","journal-title":"Int. J. e-Collaboration (IJeC)"},{"key":"29_CR51","doi-asserted-by":"crossref","unstructured":"Peng, C.-Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3\u201314 (2002)","DOI":"10.1080\/00220670209598786"}],"container-title":["Communications in Computer and Information Science","Advances in Computing and Data Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-81462-5_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,10,22]],"date-time":"2021-10-22T12:13:45Z","timestamp":1634904825000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-81462-5_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030814618","9783030814625"],"references-count":51,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-81462-5_29","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"23 October 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICACDS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advances in Computing and Data Sciences","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Nashik","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 April 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 April 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icacds2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.icacds.com\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"781","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"103","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"13% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}