{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T08:16:14Z","timestamp":1726128974848},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030805678"},{"type":"electronic","value":"9783030805685"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-80568-5_8","type":"book-chapter","created":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T17:04:53Z","timestamp":1624467893000},"page":"95-108","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Liver Cancer Trait Detection and Classification Through Machine Learning on Smart Mobile Devices"],"prefix":"10.1007","author":[{"given":"Olympia","family":"Giannou","sequence":"first","affiliation":[]},{"given":"Anastasios D.","family":"Giannou","sequence":"additional","affiliation":[]},{"given":"Dimitra E.","family":"Zazara","sequence":"additional","affiliation":[]},{"given":"D\u00f6rte","family":"Kleinschmidt","sequence":"additional","affiliation":[]},{"given":"Tobias","family":"Mummert","sequence":"additional","affiliation":[]},{"given":"Bj\u00f6rn Ole","family":"St\u00fcben","sequence":"additional","affiliation":[]},{"given":"Michael Gerhard","family":"Kaul","sequence":"additional","affiliation":[]},{"given":"Gerhard","family":"Adam","sequence":"additional","affiliation":[]},{"given":"Samuel","family":"Huber","sequence":"additional","affiliation":[]},{"given":"Georgios","family":"Pavlidis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,7,1]]},"reference":[{"key":"8_CR1","unstructured":"Stewart, B., et al.: World Cancer Report 2014 (2019)"},{"issue":"1","key":"8_CR2","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1016\/j.canlet.2008.10.040","volume":"286","author":"S-C Chuang","year":"2009","unstructured":"Chuang, S.-C., La Vecchia, C., Boffetta, P.: Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer Lett. 286(1), 9\u201314 (2009)","journal-title":"Cancer Lett."},{"issue":"11","key":"8_CR3","doi-asserted-by":"publisher","first-page":"146","DOI":"10.4236\/jcc.2015.311023","volume":"3","author":"W Li","year":"2015","unstructured":"Li, W., Jia, F., Qingmao, H.: Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. J. Comput. Commun. 3(11), 146\u2013151 (2015)","journal-title":"J. Comput. Commun."},{"issue":"4","key":"8_CR4","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1007\/s11604-018-0726-3","volume":"36","author":"K Yasaka","year":"2018","unstructured":"Yasaka, K., Akai, H., Kunimatsu, A., Kiryu, S., Abe, O.: Deep learning with convolutional neural network in radiology. Jpn J. Radiol. 36(4), 257\u2013272 (2018)","journal-title":"Jpn J. Radiol."},{"issue":"15","key":"8_CR5","doi-asserted-by":"publisher","first-page":"4057","DOI":"10.1016\/j.ijleo.2014.01.114","volume":"125","author":"W Kaizhi","year":"2014","unstructured":"Kaizhi, W., Chen, X., Ding, M.: Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik 125(15), 4057\u20134063 (2014)","journal-title":"Optik"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Gibson, E., et al.: Deep residual networks for automatic segmentation of laparoscopic videos of the liver. In: Proceedings of the SPIE, Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10135, p. 101351M (2017)","DOI":"10.1117\/12.2255975"},{"issue":"6","key":"8_CR7","doi-asserted-by":"publisher","first-page":"1248","DOI":"10.1158\/1078-0432.CCR-17-0853","volume":"24","author":"K Chaudhary","year":"2018","unstructured":"Chaudhary, K., Poirion, O.B., Liangqun, L., Garmire, L.X.: Deep learning\u2013based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24(6), 1248\u20131259 (2018)","journal-title":"Clin. Cancer Res."},{"key":"8_CR8","doi-asserted-by":"publisher","first-page":"l408","DOI":"10.1136\/bmj.l408","volume":"364","author":"N Hawkes","year":"2019","unstructured":"Hawkes, N.: Cancer survival data emphasise importance of early diagnosis. BMJ 364, l408 (2019)","journal-title":"BMJ"},{"issue":"11","key":"8_CR9","doi-asserted-by":"publisher","first-page":"1122","DOI":"10.1001\/jama.2015.1405","volume":"313","author":"JG Elmore","year":"2015","unstructured":"Elmore, J.G., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313(11), 1122\u20131132 (2015)","journal-title":"JAMA"},{"key":"8_CR10","doi-asserted-by":"publisher","first-page":"955","DOI":"10.4161\/cbt.10.10.13879","volume":"10","author":"GK Malhotra","year":"2010","unstructured":"Malhotra, G.K., Zhao, X., Band, H., Band, V.: Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Therap. 10, 955\u2013960 (2010)","journal-title":"Cancer Biol. Therap."},{"key":"8_CR11","doi-asserted-by":"publisher","first-page":"214","DOI":"10.1016\/j.neucom.2016.01.034","volume":"191","author":"X Jun","year":"2016","unstructured":"Jun, X., Luo, X., Wang, G., Gilmore, H., Madabhushi, A.: A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191, 214\u2013223 (2016)","journal-title":"Neurocomputing"},{"issue":"9","key":"8_CR12","doi-asserted-by":"publisher","first-page":"2352","DOI":"10.1162\/neco_a_00990","volume":"29","author":"W Rawat","year":"2017","unstructured":"Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352\u20132449 (2017)","journal-title":"Neural Comput."},{"key":"8_CR13","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1007\/978-3-319-97982-3_16","volume-title":"Advances in Computational Intelligence Systems","author":"M Hussain","year":"2019","unstructured":"Hussain, M., Bird, J.J., Faria, D.R.: A study on CNN transfer learning for image classification. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity, M. (eds.) UKCI 2018. AISC, vol. 840, pp. 191\u2013202. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-319-97982-3_16"},{"key":"8_CR14","unstructured":"Convolutional Neural Networks. https:\/\/www.tensorflow.org\/tutorials\/"},{"key":"8_CR15","unstructured":"Image Classifiers on ImageNet. https:\/\/github.com\/tensorflow\/models\/tree\/master\/re-search\/slim#pre-trained-models"},{"key":"8_CR16","unstructured":"ImageNet. http:\/\/www.image-net.org\/challenges\/LSVRC\/"},{"key":"8_CR17","unstructured":"Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097\u20131105 (2012)"},{"key":"8_CR18","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20139 (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"8_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.patrec.2019.03.022","volume":"125","author":"S Khan","year":"2019","unstructured":"Khan, S., Islam, N., Jan, Z., Din, I.U., Rodrigues, J.J.P.C.: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn. Lett. 125, 1\u20136 (2019)","journal-title":"Pattern Recogn. Lett."},{"issue":"6","key":"8_CR20","doi-asserted-by":"publisher","first-page":"1633","DOI":"10.1109\/JBHI.2017.2705583","volume":"21","author":"L Zhang","year":"2017","unstructured":"Zhang, L., Le, L., Nogues, I., Summers, R.M., Liu, S., Yao, J.: Deeppap: deep convolutional networks for cervical cell classification. IEEE J. Biomed. Health Inform. 21(6), 1633\u20131643 (2017)","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"11","key":"8_CR21","doi-asserted-by":"publisher","first-page":"8590","DOI":"10.1007\/s11227-020-03159-4","volume":"76","author":"A Khamparia","year":"2020","unstructured":"Khamparia, A., Gupta, D., de Albuquerque, V.H.C., Sangaiah, A.K., Jhaveri, R.H.: Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. J. Supercomput. 76(11), 8590\u20138608 (2020). https:\/\/doi.org\/10.1007\/s11227-020-03159-4","journal-title":"J. Supercomput."},{"issue":"2","key":"8_CR22","doi-asserted-by":"publisher","first-page":"80","DOI":"10.3390\/info11020080","volume":"11","author":"RM Ghoniem","year":"2020","unstructured":"Ghoniem, R.M.: A novel bio-inspired deep learning approach for liver cancer diagnosis. Information 11(2), 80 (2020)","journal-title":"Information"},{"issue":"9","key":"8_CR23","doi-asserted-by":"publisher","first-page":"3134","DOI":"10.3390\/app10093134","volume":"10","author":"S Naeem","year":"2020","unstructured":"Naeem, S., et al.: Machine-learning based hybrid-feature analysis for liver cancer classification using fused (MR and CT) images. Appl. Sci. 10(9), 3134 (2020)","journal-title":"Appl. Sci."},{"key":"8_CR24","unstructured":"Huang, G., et al.: Multi-scale dense convolutional networks for efficient prediction. arXiv:1703.09844 (2017)"}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 22nd Engineering Applications of Neural Networks Conference"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-80568-5_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,28]],"date-time":"2022-06-28T07:07:55Z","timestamp":1656400075000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-80568-5_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030805678","9783030805685"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-80568-5_8","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"1 July 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Crete","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 June 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 June 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2021.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}