{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T08:15:47Z","timestamp":1726128947452},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030805678"},{"type":"electronic","value":"9783030805685"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-80568-5_33","type":"book-chapter","created":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T17:04:53Z","timestamp":1624467893000},"page":"399-410","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Impact of Classifiers to Drift Detection Method: A Comparison"],"prefix":"10.1007","author":[{"given":"Angelos","family":"Angelopoulos","sequence":"first","affiliation":[]},{"given":"Anastasios E.","family":"Giannopoulos","sequence":"additional","affiliation":[]},{"given":"Nikolaos C.","family":"Kapsalis","sequence":"additional","affiliation":[]},{"given":"Sotirios T.","family":"Spantideas","sequence":"additional","affiliation":[]},{"given":"Lambros","family":"Sarakis","sequence":"additional","affiliation":[]},{"given":"Stamatis","family":"Voliotis","sequence":"additional","affiliation":[]},{"given":"Panagiotis","family":"Trakadas","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,7,1]]},"reference":[{"key":"33_CR1","doi-asserted-by":"publisher","first-page":"5480","DOI":"10.3390\/s20195480","volume":"20","author":"P Trakadas","year":"2020","unstructured":"Trakadas, P., et al.: An artificial intelligence-based collaboration approach in industrial IoT manufacturing: key concepts, architectural extensions and potential applications. Sensors 20, 5480 (2020)","journal-title":"Sensors"},{"key":"33_CR2","doi-asserted-by":"publisher","first-page":"109","DOI":"10.3390\/s20010109","volume":"20","author":"A Angelopoulos","year":"2020","unstructured":"Angelopoulos, A., et al.: Tackling faults in the industry 4.0 era\u2014a survey of machine-learning solutions and key aspects. Sensors 20, 109 (2020)","journal-title":"Sensors"},{"issue":"12","key":"33_CR3","doi-asserted-by":"publisher","first-page":"2346","DOI":"10.1109\/TKDE.2018.2876857","volume":"31","author":"L Jie","year":"2019","unstructured":"Jie, L., Liu, A., Dong, F., Feng, G., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346\u20132363 (2019). https:\/\/doi.org\/10.1109\/TKDE.2018.2876857","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"11","key":"33_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s42452-019-1433-0","volume":"1","author":"S Wares","year":"2019","unstructured":"Wares, S., Isaacs, J., Elyan, E.: Data stream mining: methods and challenges for handling concept drift. SN Appl. Sci. 1(11), 1\u201319 (2019). https:\/\/doi.org\/10.1007\/s42452-019-1433-0","journal-title":"SN Appl. Sci."},{"key":"33_CR5","doi-asserted-by":"publisher","first-page":"1532","DOI":"10.1109\/ACCESS.2018.2886026","volume":"7","author":"A Iwashita","year":"2019","unstructured":"Iwashita, A., Papa, J.: An overview on concept drift learning. IEEE Access 7, 1532\u20131547 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2018.2886026","journal-title":"IEEE Access"},{"issue":"18","key":"33_CR6","doi-asserted-by":"publisher","first-page":"8144","DOI":"10.1016\/j.eswa.2014.07.019","volume":"41","author":"PM Gon\u00e7alves Jr","year":"2014","unstructured":"Gon\u00e7alves, P.M., Jr., de Carvalho Santos, S.G., Barros, R.S., Vieira, D.C.: A comparative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144\u20138156 (2014). https:\/\/doi.org\/10.1016\/j.eswa.2014.07.019","journal-title":"Expert Syst. Appl."},{"key":"33_CR7","doi-asserted-by":"publisher","unstructured":"Liao, J., Zhang, J., Ng, W.W.Y.: Effects of different base classifiers to Learn++ family algorithms for concept drifting and imbalanced pattern classification problems. In: 2016 International Conference on Machine Learning and Cybernetics (ICMLC), Jeju, pp. 99\u2013104 (2016). https:\/\/doi.org\/10.1109\/ICMLC.2016.7860884.","DOI":"10.1109\/ICMLC.2016.7860884"},{"key":"33_CR8","doi-asserted-by":"publisher","first-page":"348","DOI":"10.1016\/j.ins.2018.04.014","volume":"451-452","author":"R Barros","year":"2018","unstructured":"Barros, R., Silas, G., Santos, C.: A large-scale comparison of concept drift detectors. Inf. Sci. 451\u2013452, 348\u2013370 (2018). https:\/\/doi.org\/10.1016\/j.ins.2018.04.014","journal-title":"Inf. Sci."},{"key":"33_CR9","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1016\/j.inffus.2019.03.006","volume":"52","author":"R Maior","year":"2019","unstructured":"Maior, R., de Barros, S., de Carvalho, G., Santos, : An overview and comprehensive comparison of ensembles for concept drift. Inf. Fus. 52, 213\u2013244 (2019). https:\/\/doi.org\/10.1016\/j.inffus.2019.03.006","journal-title":"Inf. Fus."},{"key":"33_CR10","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., et al.: Scikit-learn: machine learning in python. JMLR 12, 2825\u20132830 (2011)","journal-title":"JMLR"},{"issue":"72","key":"33_CR11","first-page":"1","volume":"19","author":"J Montiel","year":"2018","unstructured":"Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output streaming framework. J. Mach. Learn. Res. 19(72), 1\u20135 (2018)","journal-title":"J. Mach. Learn. Res."},{"key":"33_CR12","doi-asserted-by":"publisher","unstructured":"Nick Street, W., Kim, Y.S.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD \u201801), pp. 377\u2013382. ACM, New York (2001). https:\/\/doi.org\/10.1145\/502512.502568","DOI":"10.1145\/502512.502568"},{"key":"33_CR13","doi-asserted-by":"crossref","unstructured":"Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learning with drift detection. SBIA, 286\u2013295 (2004)","DOI":"10.1007\/978-3-540-28645-5_29"},{"issue":"2","key":"33_CR14","doi-asserted-by":"publisher","first-page":"278","DOI":"10.2307\/2981683","volume":"147","author":"AP Dawid","year":"1984","unstructured":"Dawid, A.P.: Present position and potential developments: some personal views: statistical theory: the prequential approach. J. Roy. Stat. Soc. Ser. A (Gen.) 147(2), 278\u2013292 (1984). https:\/\/doi.org\/10.2307\/2981683","journal-title":"J. Roy. Stat. Soc. Ser. A (Gen.)"}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 22nd Engineering Applications of Neural Networks Conference"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-80568-5_33","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,28]],"date-time":"2022-06-28T07:54:43Z","timestamp":1656402883000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-80568-5_33"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030805678","9783030805685"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-80568-5_33","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"1 July 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Crete","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 June 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 June 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2021.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}