{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T08:37:58Z","timestamp":1726130278748},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030786083"},{"type":"electronic","value":"9783030786090"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-78609-0_39","type":"book-chapter","created":{"date-parts":[[2021,7,8]],"date-time":"2021-07-08T19:38:40Z","timestamp":1625773120000},"page":"455-467","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["An Improved Object Detection Algorithm Based on CenterNet"],"prefix":"10.1007","author":[{"given":"Jiancheng","family":"Zou","sequence":"first","affiliation":[]},{"given":"Bailin","family":"Ge","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,7,9]]},"reference":[{"key":"39_CR1","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580\u2013587. IEEE, Columbus (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"39_CR2","doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440\u20131448. IEEE, Santiago, CL (2015)","DOI":"10.1109\/ICCV.2015.169"},{"key":"39_CR3","unstructured":"Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91\u201399. NIPS, Montreal, CA (2015)"},{"key":"39_CR4","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779\u2013788. IEEE, Las Vegas (2016)","DOI":"10.1109\/CVPR.2016.91"},{"key":"39_CR5","doi-asserted-by":"crossref","unstructured":"Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263\u20137271. IEEE, Honolulu (2017)","DOI":"10.1109\/CVPR.2017.690"},{"key":"39_CR6","unstructured":"Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)"},{"key":"39_CR7","unstructured":"Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934 (2020)"},{"key":"39_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-319-46448-0_2","volume-title":"Computer Vision \u2013 ECCV 2016","author":"W Liu","year":"2016","unstructured":"Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21\u201337. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2"},{"key":"39_CR9","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980\u20132988. IEEE, Venice (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"39_CR10","doi-asserted-by":"crossref","unstructured":"Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision, pp. 734\u2013750. Munich, DE (2018)","DOI":"10.1007\/978-3-030-01264-9_45"},{"key":"39_CR11","doi-asserted-by":"crossref","unstructured":"Duan, K., Bai, S., Xie, L., et al.: Centernet: keypoint triplets for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6569\u20136578. IEEE, Seoul (2019)","DOI":"10.1109\/ICCV.2019.00667"},{"key":"39_CR12","doi-asserted-by":"crossref","unstructured":"Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 850\u2013859. IEEE, Long Beach (2019)","DOI":"10.1109\/CVPR.2019.00094"},{"key":"39_CR13","unstructured":"Zhou, X., Wang, D., Kr\u00e4henb\u00fchl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)"},{"key":"39_CR14","doi-asserted-by":"crossref","unstructured":"Yu, J., Jiang, Y., Wang, Z., et al.: Unitbox: an advanced object detection network. In: Proceedings of the ACM International Conference on Multimedia, pp. 516\u2013520. Amsterdam, NL (2016)","DOI":"10.1145\/2964284.2967274"},{"key":"39_CR15","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778. IEEE, Las Vegas (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"39_CR16","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141. IEEE, Salt Lake City (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"39_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-01234-2_1","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S Woo","year":"2018","unstructured":"Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3\u201319. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_1"},{"key":"39_CR18","doi-asserted-by":"crossref","unstructured":"Rezatofighi, H., Tsoi, N., Gwak, J.Y., et al.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 658\u2013666. IEEE, Long Beach (2019)","DOI":"10.1109\/CVPR.2019.00075"},{"key":"39_CR19","doi-asserted-by":"crossref","unstructured":"Zheng, Z., Wang, P., Liu, W., et al.: Distance-IoU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12993\u201313000. AAAI, New York (2020)","DOI":"10.1609\/aaai.v34i07.6999"},{"key":"39_CR20","unstructured":"Zheng, Z., Wang, P., Ren, D., et al.: Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. arXiv preprint arXiv:2005.03572 (2020)"},{"key":"39_CR21","unstructured":"Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence and Security"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-78609-0_39","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,8]],"date-time":"2021-07-08T19:58:39Z","timestamp":1625774319000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-78609-0_39"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030786083","9783030786090"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-78609-0_39","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"9 July 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Intelligence and Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Dublin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ireland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 July 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 July 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"incodldos2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icaisconf.com\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}