{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T07:00:49Z","timestamp":1726124449720},"publisher-location":"Cham","reference-count":47,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030762278"},{"type":"electronic","value":"9783030762285"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-76228-5_10","type":"book-chapter","created":{"date-parts":[[2021,5,11]],"date-time":"2021-05-11T12:09:47Z","timestamp":1620734987000},"page":"139-153","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Two-Class Fuzzy Clustering Ensemble Approach Based on a Constraint on Fuzzy Memberships"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2979-5631","authenticated-orcid":false,"given":"Omid","family":"Aligholipour","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3381-9026","authenticated-orcid":false,"given":"Mehmet","family":"Kuntalp","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,12]]},"reference":[{"key":"10_CR1","doi-asserted-by":"crossref","unstructured":"Wang, W.: Some fundamental issues in ensemble methods. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2243\u20132250 (2018)","DOI":"10.1109\/IJCNN.2008.4634108"},{"key":"10_CR2","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1016\/j.eswa.2016.12.035","volume":"73","author":"G Haixiang","year":"2017","unstructured":"Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220\u2013239 (2017)","journal-title":"Expert Syst. Appl."},{"key":"10_CR3","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-90080-3","volume-title":"Recent Advances in Ensembles for Feature Selection","author":"V Bol\u00f3n-Canedo","year":"2018","unstructured":"Bol\u00f3n-Canedo, V., Alonso-Betanzos, A.: Recent Advances in Ensembles for Feature Selection, vol. 147. Springer, Heidelberg (2018)"},{"key":"10_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.cosrev.2018.01.003","volume":"28","author":"T Boongoen","year":"2018","unstructured":"Boongoen, T., Iam-On, N.: Cluster ensembles: a survey of approaches with recent extensions and applications. Comput. Sci. Rev. 28, 1\u201325 (2018)","journal-title":"Comput. Sci. Rev."},{"key":"10_CR5","doi-asserted-by":"crossref","unstructured":"Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B.J.P., Wang, K.: An overview of Microsoft academic service (mas) and applications. In: Proceedings of the 24th International Conference on World Wide Web, pp. 243\u2013246 (2015)","DOI":"10.1145\/2740908.2742839"},{"key":"10_CR6","doi-asserted-by":"publisher","first-page":"179048","DOI":"10.1109\/ACCESS.2019.2950159","volume":"7","author":"W Liang","year":"2019","unstructured":"Liang, W., Zhang, Y., Xu, J., Lin, D.: Optimization of basic clustering for ensemble clustering: an information-theoretic perspective. IEEE Access 7, 179048\u2013179062 (2019)","journal-title":"IEEE Access"},{"key":"10_CR7","first-page":"636","volume":"5","author":"R Ghaemi","year":"2009","unstructured":"Ghaemi, R., Sulaiman, M.N., Ibrahim, H., Mustapha, N.: A survey: clustering ensembles techniques. World Acad. Sci. Eng. Technol. 5, 636\u2013645 (2009)","journal-title":"World Acad. Sci. Eng. Technol."},{"key":"10_CR8","doi-asserted-by":"publisher","first-page":"1866","DOI":"10.1109\/TPAMI.2005.237","volume":"27","author":"A Topchy","year":"2005","unstructured":"Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: models of consensus and weak partitions. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1866\u20131881 (2005)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10_CR9","unstructured":"Topchy, A., Jain, A.K., Punch, W.: Combining multiple weak clustering. In: Third IEEE International Conference on Data Mining, IEEE, pp. 331\u2013338 (2003)"},{"key":"10_CR10","doi-asserted-by":"publisher","first-page":"389","DOI":"10.3233\/IDA-140647","volume":"18","author":"H Alizadeh","year":"2014","unstructured":"Alizadeh, H., Minaei-Bidgoli, B., Parvin, H.: Cluster ensemble selection based on a new cluster stability measure. Intell. Data Anal. 18, 389\u2013408 (2014)","journal-title":"Intell. Data Anal."},{"key":"10_CR11","doi-asserted-by":"crossref","unstructured":"Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data (TKDD) 1, 4 (2007)","DOI":"10.1145\/1217299.1217303"},{"key":"10_CR12","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1186\/s12920-018-0433-z","volume":"11","author":"Y Gan","year":"2018","unstructured":"Gan, Y., Li, N., Zou, G., Xin, Y., Guan, J.: Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method. BMC Med. Genomics 11, 117 (2018)","journal-title":"BMC Med. Genomics"},{"key":"10_CR13","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.artmed.2019.05.002","volume":"97","author":"U Agrawal","year":"2019","unstructured":"Agrawal, U., et al.: Combining clustering and classification ensembles: a novel pipeline to identify breast cancer profiles. Artif. Intell. Med. 97, 27\u201337 (2019)","journal-title":"Artif. Intell. Med."},{"key":"10_CR14","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1016\/j.procs.2016.09.379","volume":"102","author":"E Bedalli","year":"2016","unstructured":"Bedalli, E., Man\u00e7ellari, E., Asilkan, O.: A heterogeneous cluster ensemble model for improving the stability of fuzzy cluster analysis. Procedia Comput. Sci. 102, 129\u2013136 (2016)","journal-title":"Procedia Comput. Sci."},{"key":"10_CR15","doi-asserted-by":"publisher","first-page":"264","DOI":"10.1016\/j.inffus.2005.01.008","volume":"7","author":"ST Hadjitodorov","year":"2016","unstructured":"Hadjitodorov, S.T., Kuncheva, L.I., Todorova, L.P.: Moderate diversity for better cluster ensembles. Inform. Fusion 7, 264\u2013275 (2016)","journal-title":"Inform. Fusion"},{"key":"10_CR16","doi-asserted-by":"crossref","unstructured":"Ye, M., Liu, W., Wei, J., Hu, X.: Fuzzy c -means and cluster ensemble with random projection for big data clustering. Math. Prob. Eng. 1\u201313 (2016)","DOI":"10.1155\/2016\/6529794"},{"key":"10_CR17","doi-asserted-by":"crossref","unstructured":"Popescu, M., Keller, K.M., Bezdek, J.C., Zare, A.: Random projections fuzzy c-means (RPFCM) for big data clustering. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1\u20136 (2015)","DOI":"10.1109\/FUZZ-IEEE.2015.7337933"},{"key":"10_CR18","doi-asserted-by":"publisher","first-page":"603","DOI":"10.1016\/j.compeleceng.2018.05.005","volume":"68","author":"X Wu","year":"2018","unstructured":"Wu, X., Ma, T., Cao, J., Tian, Y., Alabdulkarim, A.: A comparative study of clustering ensemble algorithms. Comput. Electr. Eng. 68, 603\u2013615 (2018)","journal-title":"Comput. Electr. Eng."},{"key":"10_CR19","doi-asserted-by":"crossref","unstructured":"Moazzen, Y., Yalcin, B., Ta\u015fdemir, K.: Sampling based approximate spectral clustering ensemble for unsupervised land cover identification. In: 2015 IEEE International Geoscience and Remote Sensing Symposium, pp. 2405\u20132408 (2015)","DOI":"10.1109\/IGARSS.2015.7326294"},{"key":"10_CR20","first-page":"583","volume":"3","author":"A Strehl","year":"2002","unstructured":"Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583\u2013617 (2002)","journal-title":"J. Mach. Learn. Res."},{"key":"10_CR21","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1142\/S0218001411008683","volume":"25","author":"S Vega-Pons","year":"2011","unstructured":"Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. Int. J. Pattern Recognit. Artif. Intell. 25, 337\u2013372 (2011)","journal-title":"Int. J. Pattern Recognit. Artif. Intell."},{"key":"10_CR22","doi-asserted-by":"publisher","first-page":"1090","DOI":"10.1093\/bioinformatics\/btg038","volume":"19","author":"S Dudoit","year":"2003","unstructured":"Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19, 1090\u20131099 (2003)","journal-title":"Bioinformatics"},{"key":"10_CR23","doi-asserted-by":"publisher","first-page":"835","DOI":"10.1109\/TPAMI.2005.113","volume":"27","author":"AL Fred","year":"2005","unstructured":"Fred, A.L., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 835\u2013850 (2005)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10_CR24","first-page":"791","volume":"5","author":"CS Li","year":"2010","unstructured":"Li, C.S., Wang, Y., Yang, H.: Combining fuzzy partitions using fuzzy majority vote and KNN. J. Comput. 5, 791\u2013798 (2010)","journal-title":"J. Comput."},{"key":"10_CR25","doi-asserted-by":"publisher","DOI":"10.1016\/j.jksuci.2019.09.013","volume-title":"A multiple clustering combination approach based on iterative voting process","author":"S Khedairia","year":"2019","unstructured":"Khedairia, S., Khadir, M.T.: A multiple clustering combination approach based on iterative voting process. J. King Saud Univ.-Comput. Inform, Sci (2019)"},{"key":"10_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1134\/S1054661818010029","volume":"28","author":"VB Berikov","year":"2018","unstructured":"Berikov, V.B.: A probabilistic model of fuzzy clustering ensemble. Pattern Recognit. Image Anal. 28, 1\u201310 (2018)","journal-title":"Pattern Recognit. Image Anal."},{"key":"10_CR27","doi-asserted-by":"publisher","first-page":"2567","DOI":"10.1007\/s10489-018-01397-x","volume":"49","author":"M Mojarad","year":"2019","unstructured":"Mojarad, M., Nejatian, S., Parvin, H., Mohammadpoor, M.: A fuzzy clustering ensemble based on cluster clustering and iterative fusion of base clusters. Appl. Intell. 49, 2567\u20132581 (2019)","journal-title":"Appl. Intell."},{"issue":"5","key":"10_CR28","doi-asserted-by":"publisher","first-page":"894","DOI":"10.1007\/s40815-015-0117-1","volume":"18","author":"LH Son","year":"2016","unstructured":"Son, L.H., Van Hai, P.: A novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Int. J. Fuzzy Syst. 18(5), 894\u2013903 (2016)","journal-title":"Int. J. Fuzzy Syst."},{"key":"10_CR29","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1016\/j.artmed.2008.07.014","volume":"45","author":"R Avogadri","year":"2009","unstructured":"Avogadri, R., Valentini, G.: Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artif. Intell. Med. 45, 173\u2013183 (2009)","journal-title":"Artif. Intell. Med."},{"issue":"8","key":"10_CR30","doi-asserted-by":"publisher","first-page":"2699","DOI":"10.1016\/j.patcog.2015.02.014","volume":"48","author":"C Zhong","year":"2015","unstructured":"Zhong, C., Yue, X., Zhang, Z., Lei, J.: A clustering ensemble: two-level-refined co-association matrix with path-based transformation. Pattern Recogn. 48(8), 2699\u20132709 (2015)","journal-title":"Pattern Recogn."},{"key":"10_CR31","doi-asserted-by":"publisher","first-page":"780","DOI":"10.1080\/08839510802170546","volume":"22","author":"K Punera","year":"2008","unstructured":"Punera, K., Ghosh, J.: Consensus-based ensembles of soft clusterings. Appl. Artif. Intell. 22, 780\u2013810 (2008)","journal-title":"Appl. Artif. Intell."},{"key":"10_CR32","first-page":"1994","volume":"2","author":"L Yang","year":"2006","unstructured":"Yang, L., Lv, H., Wang, W.: Soft cluster ensemble based on fuzzy similarity measure. Proc. Multiconf. Comput. Eng. Syst. Appl. 2, 1994\u20131997 (2006)","journal-title":"Proc. Multiconf. Comput. Eng. Syst. Appl."},{"key":"10_CR33","unstructured":"MacQueen, K.: Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. Math. Stat. Probab. 1(14), 281\u2013297 (1967)"},{"key":"10_CR34","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4757-0450-1","volume-title":"Pattern Recognition with Fuzzy Objective Function","author":"JC Bezdek","year":"1981","unstructured":"Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function, vol. 2981. Plenum Press, New York (1981)"},{"key":"10_CR35","doi-asserted-by":"crossref","unstructured":"Zhu, L., Chung, F.L., Wang, S.: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions. IEEE Trans. Syst. Man. Cybern. Part B (Cybernetics) 39(3), 578\u2013591 (2009)","DOI":"10.1109\/TSMCB.2008.2004818"},{"issue":"9\u201310","key":"10_CR36","doi-asserted-by":"publisher","first-page":"1607","DOI":"10.1016\/S0167-8655(02)00401-4","volume":"24","author":"JL Fan","year":"2003","unstructured":"Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy c-means clustering algorithm. Pattern Recogn. Lett. 24(9\u201310), 1607\u20131612 (2003)","journal-title":"Pattern Recogn. Lett."},{"issue":"2\u20133","key":"10_CR37","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1023\/A:1012801612483","volume":"17","author":"M Halkidi","year":"2001","unstructured":"Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inform. Syst. 17(2\u20133), 107\u2013145 (2001)","journal-title":"J. Intell. Inform. Syst."},{"key":"10_CR38","unstructured":"Kov\u00e1cs, F., Leg\u00e1ny, C., Babos, A.: Cluster validity measurement techniques. In: 6th International Symposium of Hungarian Researchers on Computational Intelligence, p. 35 (2005)"},{"key":"10_CR39","doi-asserted-by":"publisher","first-page":"45","DOI":"10.4103\/0301-4738.37595","volume":"56","author":"R Parikh","year":"2008","unstructured":"Parikh, R., Mathai, A., Parikh, S., Sekhar, G.C., Thomas, R.: Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 56, 45 (2008)","journal-title":"Indian J. Ophthalmol."},{"key":"10_CR40","doi-asserted-by":"crossref","unstructured":"Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ACM, pp. 233\u2013240 (2006)","DOI":"10.1145\/1143844.1143874"},{"key":"10_CR41","unstructured":"Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2019). http:\/\/archive.ics.uci.edu\/ml"},{"key":"10_CR42","doi-asserted-by":"crossref","unstructured":"Jain, A.K., Law, M.H.: Data clustering: a user\u2019s dilemma. In: International Conference on Pattern Recognition and Machine Intelligence, pp. 1\u201310. Springer (2015)","DOI":"10.1007\/11590316_1"},{"key":"10_CR43","unstructured":"Moody, G., Goldberger, A., McClennen, S., Swiryn, S.: Predicting the onset of paroxysmal atrial fibrillation: the Computers in Cardiology Challenge 2001. In Computers in Cardiology 2001, IEEE, 28 (Cat. No. 01CH37287), pp. 113\u2013116 (2001). http:\/\/physionet.org\/physiobank\/database\/afpdb"},{"key":"10_CR44","unstructured":"Hilavin, I.: Development of a System to Diagnose Paroxysmal Atrial Fibrillation Patients from Arrhythmia Free ECG Records. Ph.D. dissertation, Dokuz Eylul University (2016)"},{"key":"10_CR45","doi-asserted-by":"crossref","unstructured":"Bezdek, J.C.: Cluster validity with fuzzy sets (1973)","DOI":"10.1080\/01969727308546047"},{"issue":"6","key":"10_CR46","doi-asserted-by":"publisher","first-page":"613","DOI":"10.1016\/0167-8655(96)00026-8","volume":"17","author":"RN Dave","year":"1996","unstructured":"Dave, R.N.: Validating fuzzy partitions obtained through c-shells clustering. Pattern Recogn. Lett. 17(6), 613\u2013623 (1996)","journal-title":"Pattern Recogn. Lett."},{"key":"10_CR47","doi-asserted-by":"publisher","first-page":"841","DOI":"10.1109\/34.85677","volume":"8","author":"XL Xie","year":"1991","unstructured":"Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 8, 841\u2013847 (1991)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Communications in Computer and Information Science","Information Management and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-76228-5_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,11]],"date-time":"2021-05-11T22:21:29Z","timestamp":1620771689000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-76228-5_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030762278","9783030762285"],"references-count":47,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-76228-5_10","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"12 May 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors declare that they have no conflict of interest.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}},{"value":"SIMBig","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Annual International Conference on Information Management and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lima","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Peru","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 October 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 October 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"simbig2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/simbig.org\/SIMBig2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"122","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}