{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T23:33:18Z","timestamp":1742945598631,"version":"3.40.3"},"publisher-location":"Cham","reference-count":11,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030750749"},{"type":"electronic","value":"9783030750756"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-75075-6_32","type":"book-chapter","created":{"date-parts":[[2021,4,26]],"date-time":"2021-04-26T07:06:40Z","timestamp":1619420800000},"page":"394-406","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Training Effective Neural Networks on\u00a0Structured Data with Federated Learning"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8197-1145","authenticated-orcid":false,"given":"Anastasia","family":"Pustozerova","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9272-6225","authenticated-orcid":false,"given":"Andreas","family":"Rauber","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0424-5999","authenticated-orcid":false,"given":"Rudolf","family":"Mayer","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,4,27]]},"reference":[{"key":"32_CR1","unstructured":"McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, (2017). PMLR"},{"key":"32_CR2","doi-asserted-by":"crossref","unstructured":"Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: International Workshop on Brain Lesion (BrainLes), in conjunction with MICCAI (2018)","DOI":"10.1007\/978-3-030-11723-8_9"},{"key":"32_CR3","doi-asserted-by":"crossref","unstructured":"Rieke, N., Hancox, J., Li, W., et\u00a0al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1) (2020)","DOI":"10.1038\/s41746-020-00323-1"},{"key":"32_CR4","unstructured":"Kone\u010dn\u00fd, J., McMahan, H.B., Yu, F.X. Richt\u00e1rik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. In: NIPS Workshop on Private Multi-Party Machine Learning (2016)"},{"key":"32_CR5","doi-asserted-by":"crossref","unstructured":"Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous resources in mobile edge. In: IEEE International Conference on Communications (2019)","DOI":"10.1109\/ICC.2019.8761315"},{"key":"32_CR6","doi-asserted-by":"crossref","unstructured":"Sattler, F., Wiedemann, S., M\u00fcller, K.-R., Samek, W.: Robust and communication-efficient federated learning from non-i.i.d. data. IEEE Trans. Neural Netw. Learn. Syst. (2019)","DOI":"10.1109\/TNNLS.2019.2944481"},{"key":"32_CR7","volume-title":"Threats to Federated Learning","author":"L Lyu","year":"2020","unstructured":"Lyu, L., Han, Yu., Zhao, J., Yang, Q.: Threats to Federated Learning. Springer, Cham (2020)"},{"key":"32_CR8","doi-asserted-by":"crossref","unstructured":"Truex, S., Liu, L., Gursoy, M., Lei, Yu., Wei, W.: Demystifying membership inference attacks in machine learning as a service. IEEE Trans. Serv. Comput. (2019)","DOI":"10.1109\/TSC.2019.2897554"},{"key":"32_CR9","doi-asserted-by":"crossref","unstructured":"Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., Jirstrand, M.: A performance evaluation of federated learning algorithms. In: Workshop on Distributed Infrastructures for Deep Learning. ACM (2018)","DOI":"10.1145\/3286490.3286559"},{"key":"32_CR10","doi-asserted-by":"crossref","unstructured":"Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: IEEE Symposium on Security and Privacy (SP) (2017)","DOI":"10.1109\/SP.2017.41"},{"key":"32_CR11","doi-asserted-by":"crossref","unstructured":"Marcano-Cede\u00f1o, A., Buend\u00eda-Buend\u00eda, F.S., Andina, D.: Breast cancer classification applying artificial metaplasticity. In: Bioinspired Applications in Artificial and Natural Computation. Springer, Berlin, Heidelberg (2009)","DOI":"10.1007\/978-3-642-02267-8_6"}],"container-title":["Lecture Notes in Networks and Systems","Advanced Information Networking and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-75075-6_32","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,26]],"date-time":"2021-04-26T07:18:53Z","timestamp":1619421533000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-75075-6_32"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030750749","9783030750756"],"references-count":11,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-75075-6_32","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"27 April 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AINA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Information Networking and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Toronto, ON","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 May 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 May 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"35","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aina2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/voyager.ce.fit.ac.jp\/conf\/aina\/2021\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}