{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T08:57:20Z","timestamp":1726131440474},"publisher-location":"Cham","reference-count":12,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030731120"},{"type":"electronic","value":"9783030731137"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-73113-7_15","type":"book-chapter","created":{"date-parts":[[2021,7,22]],"date-time":"2021-07-22T15:03:19Z","timestamp":1626966199000},"page":"166-174","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Gated Extra Memory Recurrent Unit for\u00a0Learning Video Representations"],"prefix":"10.1007","author":[{"given":"Daria","family":"Vazhenina","sequence":"first","affiliation":[]},{"given":"Atsunori","family":"Kanemura","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,7,23]]},"reference":[{"key":"15_CR1","unstructured":"Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. Presented at the (2016)"},{"key":"15_CR2","unstructured":"Denton, E., Birodkar, V.: Unsupervised learning of disentangled representations from video. In: Advances in Neural Information Processing Systems (NIPS), pp. 4414\u20134423 (2017)"},{"key":"15_CR3","unstructured":"Elsayed, N., Maida, A.S., Bayoumi, M.: Reduced-gate convolutional LSTM using predictive coding for spatiotemporal prediction. arXiv:1810.07251 (2018)"},{"issue":"2","key":"15_CR4","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1109\/TETCI.2017.2762739","volume":"2","author":"M Ravanelli","year":"2018","unstructured":"Ravanelli, M., Brakel, P., Omologo, M., Bengio, Y.: Light gated recurrent units for speech recognition. IEEE Trans. Emerg. Topics Comput. Intell. 2(2), 92\u2013102 (2018)","journal-title":"IEEE Trans. Emerg. Topics Comput. Intell."},{"key":"15_CR5","unstructured":"Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems (NIPS), pp. 802\u2013810 (2015)"},{"key":"15_CR6","unstructured":"Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference Machine Learning (ICML), pp. 843\u2013852 (2015)"},{"key":"15_CR7","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1007\/978-3-030-39878-1_5","volume-title":"Adv. Artif. Intell.","author":"D Vazhenina","year":"2020","unstructured":"Vazhenina, D., Kanemura, A.: Reducing the number of multiplications in convolutional recurrent neural networks (ConvRNNs). In: Ohsawa, Y. (ed.) JSAI 2019. AISC, vol. 1128, pp. 45\u201352. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-39878-1_5"},{"key":"15_CR8","unstructured":"Wang, Y., Gao, Z., Long, M., Wang, J., Yu, P.S.: PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. Presented at the (2018)"},{"key":"15_CR9","unstructured":"Wang, Y., Jiang, L., Yang, M.H., Li, L.J., Long, M., Fei-Fei, L.: Eidetic 3d lstm: a model for video prediction and beyond. Presented at the (2019)"},{"key":"15_CR10","unstructured":"Wang, Y., Long, M., Wang, J., Gao, Z., Yu., P.S.: PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs. In: Advances in Neural Information Processing Systems, (NIPS), pp. 879\u2013888 (2017)"},{"key":"15_CR11","doi-asserted-by":"crossref","unstructured":"Wang, Y., Zhang, J., Zhu, H., Long, M., Wang, J., Yu, P.S.: Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9154\u20139162 (2019)","DOI":"10.1109\/CVPR.2019.00937"},{"issue":"4","key":"15_CR12","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600\u2013612 (2004)","journal-title":"IEEE Trans. Image Process."}],"container-title":["Advances in Intelligent Systems and Computing","Advances in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-73113-7_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,22]],"date-time":"2021-07-22T15:06:24Z","timestamp":1626966384000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-73113-7_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030731120","9783030731137"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-73113-7_15","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"23 July 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"JSAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Annual Conference of the Japanese Society for Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kumamoto-ken","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"34","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"jsai2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.ai-gakkai.or.jp\/jsai2020\/en","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}