{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T06:33:00Z","timestamp":1726122780755},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030727918"},{"type":"electronic","value":"9783030727925"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-72792-5_36","type":"book-chapter","created":{"date-parts":[[2021,4,26]],"date-time":"2021-04-26T20:34:22Z","timestamp":1619469262000},"page":"442-459","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Many-Objective Squirrel Hybrid Optimization Algorithm: MaSHOA"],"prefix":"10.1007","author":[{"given":"Zhuoran","family":"Liu","sequence":"first","affiliation":[]},{"given":"Fanhao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xinyuan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Qidong","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Changsheng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Bin","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,4,27]]},"reference":[{"key":"36_CR1","doi-asserted-by":"publisher","first-page":"32328","DOI":"10.1109\/ACCESS.2018.2837692","volume":"6","author":"MG Kibria","year":"2018","unstructured":"Kibria, M.G., Nguyen, K., Villardi, G.P., Zhao, O., Ishizu, K., Kojima, F.: Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access 6, 32328\u201332338 (2018)","journal-title":"IEEE Access"},{"key":"36_CR2","first-page":"20","volume":"8","author":"GG Wang","year":"2017","unstructured":"Wang, G.G., Cai, X., Cui, Z., Min, G., Chen, J.: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm. IEEE Trans. Emerg. Top. Comput. 8, 20\u201330 (2017)","journal-title":"IEEE Trans. Emerg. Top. Comput."},{"key":"36_CR3","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1109\/TEVC.2019.2912204","volume":"24","author":"D Gong","year":"2019","unstructured":"Gong, D., Xu, B., Zhang, Y., Guo, Y., Yang, S.: A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems. IEEE Trans. Evol. Comput. 24, 142\u2013156 (2019)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"11","key":"36_CR4","doi-asserted-by":"publisher","first-page":"1009","DOI":"10.1109\/TSE.2017.2654255","volume":"43","author":"M Fleck","year":"2017","unstructured":"Fleck, M., Troya, J., Kessentini, M., Wimmer, M., Alkhazi, B.: Model transformation modularization as a many-objective optimization problem. IEEE Trans. Softw. Eng. 43(11), 1009\u20131032 (2017)","journal-title":"IEEE Trans. Softw. Eng."},{"key":"36_CR5","doi-asserted-by":"publisher","first-page":"377","DOI":"10.1016\/j.cie.2019.01.055","volume":"129","author":"D Zouache","year":"2019","unstructured":"Zouache, D., Arby, Y.O., Nouioua, F., et al.: Multi-objective chicken swarm optimization: a novel algorithm for solving multi-objective optimization problems. Comput. Ind. Eng. 129, 377\u2013391 (2019)","journal-title":"Comput. Ind. Eng."},{"issue":"3","key":"36_CR6","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1109\/TEVC.2016.2592479","volume":"21","author":"S Jiang","year":"2017","unstructured":"Jiang, S., Yang, S.: A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Trans. Evol. Comput. 21(3), 329\u2013346 (2017)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"36_CR7","doi-asserted-by":"crossref","unstructured":"Ishibuchi, H., Sato, H.: Evolutionary many-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 614\u2013661, July 2019","DOI":"10.1145\/3319619.3323377"},{"key":"36_CR8","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1016\/j.asoc.2016.11.014","volume":"50","author":"J Luo","year":"2017","unstructured":"Luo, J., Liu, Q., Yang, Y., Li, X., Chen, M.R., Cao, W.: An artificial bee colony algorithm for multi-objective optimisation. Appl. Soft Comput. 50, 235\u2013251 (2017)","journal-title":"Appl. Soft Comput."},{"issue":"3","key":"36_CR9","doi-asserted-by":"publisher","first-page":"1867","DOI":"10.1109\/COMST.2017.2698366","volume":"19","author":"JH Cho","year":"2017","unstructured":"Cho, J.H., Wang, Y., Chen, R., et al.: A survey on modeling and optimizing multi-objective systems. IEEE Commun. Surv. Tutor. 19(3), 1867\u20131901 (2017)","journal-title":"IEEE Commun. Surv. Tutor."},{"issue":"4","key":"36_CR10","doi-asserted-by":"publisher","first-page":"602","DOI":"10.1109\/TEVC.2013.2281534","volume":"18","author":"H Jain","year":"2013","unstructured":"Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602\u2013622 (2013)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"36_CR11","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1109\/TEVC.2016.2634625","volume":"22","author":"D Gong","year":"2016","unstructured":"Gong, D., Sun, J., Miao, Z.: A set-based genetic algorithm for interval many-objective optimization problems. IEEE Trans. Evol. Comput. 22(1), 47\u201360 (2016)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"36_CR12","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1109\/TEVC.2015.2420112","volume":"20","author":"Y Yuan","year":"2015","unstructured":"Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(1), 16\u201337 (2015)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"36_CR13","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1016\/j.ins.2018.03.015","volume":"448","author":"H Zhao","year":"2018","unstructured":"Zhao, H., Zhang, C., Zhang, B., Duan, P., Yang, Y.: Decomposition-based sub-problem optimal solution updating direction-guided evolutionary many-objective algorithm. Inf. Sci. 448, 91\u2013111 (2018)","journal-title":"Inf. Sci."},{"issue":"6","key":"36_CR14","doi-asserted-by":"publisher","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","volume":"11","author":"Q Zhang","year":"2007","unstructured":"Zhang, Q., Li, H.: MOEA\/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712\u2013731 (2007)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"5","key":"36_CR15","doi-asserted-by":"publisher","first-page":"773","DOI":"10.1109\/TEVC.2016.2519378","volume":"20","author":"R Cheng","year":"2016","unstructured":"Cheng, R., Jin, Y., Olhofer, M., et al.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773\u2013791 (2016)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"36_CR16","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1016\/j.knosys.2016.10.030","volume":"116","author":"Y Zhu","year":"2017","unstructured":"Zhu, Y., Liang, J., Chen, J., Ming, Z.: An improved NSGA-III algorithm for feature selection used in intrusion detection. Knowl.-Based Syst. 116, 74\u201385 (2017)","journal-title":"Knowl.-Based Syst."},{"key":"36_CR17","doi-asserted-by":"publisher","first-page":"839","DOI":"10.1109\/TEVC.2020.2964705","volume":"24","author":"K Shang","year":"2020","unstructured":"Shang, K., Ishibuchi, H.: A new hypervolume-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 24, 839\u2013852 (2020)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"36_CR18","doi-asserted-by":"publisher","first-page":"100576","DOI":"10.1016\/j.swevo.2019.100576","volume":"50","author":"Y Du","year":"2019","unstructured":"Du, Y., Xing, L., Zhang, J., et al.: MOEA based memetic algorithms for multi-objective satellite range scheduling problem. Swarm Evol. Comput. 50, 100576 (2019)","journal-title":"Swarm Evol. Comput."},{"issue":"2","key":"36_CR19","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1109\/TEVC.2018.2791283","volume":"23","author":"Y Sun","year":"2018","unstructured":"Sun, Y., Yen, G.G., Yi, Z.: IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173\u2013187 (2018)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"36_CR20","doi-asserted-by":"crossref","unstructured":"Liu, Z., Jiang, D., Zhang, C., et al.: A novel fireworks algorithm for the protein-ligand docking on the AutoDock. Mobile Netw. Appl. 1\u201312 (2019)","DOI":"10.1007\/s11036-019-01412-6"},{"issue":"1","key":"36_CR21","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1007\/s10489-016-0825-8","volume":"46","author":"S Mirjalili","year":"2017","unstructured":"Mirjalili, S., Jangir, P., Saremi, S.: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46(1), 79\u201395 (2017)","journal-title":"Appl. Intell."},{"issue":"4","key":"36_CR22","doi-asserted-by":"publisher","first-page":"805","DOI":"10.1007\/s10489-017-1019-8","volume":"48","author":"SZ Mirjalili","year":"2018","unstructured":"Mirjalili, S.Z., Mirjalili, S., Saremi, S., et al.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48(4), 805\u2013820 (2018)","journal-title":"Appl. Intell."},{"key":"36_CR23","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/j.ins.2016.12.003","volume":"382","author":"M Kumar","year":"2017","unstructured":"Kumar, M., Guria, C.: The elitist non-dominated sorting genetic algorithm with inheritance (i-NSGA-II) and its jumping gene adaptations for multi-objective optimization. Inf. Sci. 382, 15\u201337 (2017)","journal-title":"Inf. Sci."},{"key":"36_CR24","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1016\/j.swevo.2018.02.013","volume":"44","author":"M Jain","year":"2019","unstructured":"Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol. Comput. 44, 148\u2013175 (2019)","journal-title":"Swarm Evol. Comput."},{"key":"36_CR25","series-title":"Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering","doi-asserted-by":"publisher","first-page":"598","DOI":"10.1007\/978-3-030-32216-8_58","volume-title":"Simulation Tools and Techniques","author":"Z Liu","year":"2019","unstructured":"Liu, Z., Zhang, C., Zhao, Q., Zhang, B., Sun, W.: Comparative study of evolutionary algorithms for protein-ligand docking problem on the AutoDock. In: Song, H., Jiang, D. (eds.) SIMUtools. LNICSSITE, vol. 295, pp. 598\u2013607. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32216-8_58"},{"issue":"2","key":"36_CR26","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1109\/TEVC.2016.2587749","volume":"21","author":"H Ishibuchi","year":"2016","unstructured":"Ishibuchi, H., Setoguchi, Y., Masuda, H., et al.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169\u2013190 (2016)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"36_CR27","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1007\/s10898-014-0214-y","volume":"62","author":"AB Ruiz","year":"2014","unstructured":"Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Global Optim. 62(1), 101\u2013129 (2014). https:\/\/doi.org\/10.1007\/s10898-014-0214-y","journal-title":"J. Global Optim."},{"issue":"2","key":"36_CR28","first-page":"115","volume":"9","author":"K Deb","year":"1995","unstructured":"Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115\u2013148 (1995)","journal-title":"Complex Syst."},{"key":"36_CR29","volume-title":"Multi-objective Optimization Using Evolutionary Algorithms","author":"K Deb","year":"2001","unstructured":"Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Hoboken (2001)"}],"container-title":["Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering","Simulation Tools and Techniques"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-72792-5_36","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,26]],"date-time":"2021-04-26T22:17:38Z","timestamp":1619475458000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-72792-5_36"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030727918","9783030727925"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-72792-5_36","relation":{},"ISSN":["1867-8211","1867-822X"],"issn-type":[{"type":"print","value":"1867-8211"},{"type":"electronic","value":"1867-822X"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"27 April 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SIMUtools","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Simulation Tools and Techniques","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guiyang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"simutools2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/simutools.eai-conferences.org\/2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Confy +","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"354","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"125","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"35% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID 19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}