{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T05:44:55Z","timestamp":1726119895347},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030722395"},{"type":"electronic","value":"9783030722401"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-72240-1_8","type":"book-chapter","created":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T10:49:01Z","timestamp":1617274141000},"page":"107-119","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Robustness of Meta Matrix Factorization Against Strict Privacy Constraints"],"prefix":"10.1007","author":[{"given":"Peter","family":"Muellner","sequence":"first","affiliation":[]},{"given":"Dominik","family":"Kowald","sequence":"additional","affiliation":[]},{"given":"Elisabeth","family":"Lex","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,30]]},"reference":[{"key":"8_CR1","unstructured":"Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The unfairness of popularity bias in recommendation. In: Workshop on Recommendation in Multistakeholder Environments in Conjunction with RecSys 2019 (2019)"},{"key":"8_CR2","unstructured":"Ammad-Ud-Din, M., et al.: Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint arXiv:1901.09888 (2019)"},{"key":"8_CR3","doi-asserted-by":"crossref","unstructured":"Cantador, I., Brusilovsky, P., Kuflik, T.: Second international workshop on information heterogeneity and fusion in recommender systems. In: RecSys 2011 (2011)","DOI":"10.1145\/2043932.2044016"},{"key":"8_CR4","unstructured":"Chen, C., Zhang, J., Tung, A.K., Kankanhalli, M., Chen, G.: Robust federated recommendation system. arXiv preprint arXiv:2006.08259 (2020)"},{"key":"8_CR5","unstructured":"Chen, F., Luo, M., Dong, Z., Li, Z., He, X.: Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876 (2018)"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Duriakova, E., et al.: PDMFRec: a decentralised matrix factorisation with tunable user-centric privacy. In: RecSys 2019 (2019)","DOI":"10.1145\/3298689.3347035"},{"key":"8_CR7","unstructured":"Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML 2017 (2017)"},{"key":"8_CR8","unstructured":"Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS 2011 (2011)"},{"issue":"2","key":"8_CR9","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1023\/A:1011419012209","volume":"4","author":"K Goldberg","year":"2001","unstructured":"Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retrieval 4(2), 133\u2013151 (2001)","journal-title":"Inf. Retrieval"},{"key":"8_CR10","doi-asserted-by":"crossref","unstructured":"Guo, G., Zhang, J., Thalmann, D., Yorke-Smith, N.: ETAF: an extended trust antecedents framework for trust prediction. In: ASONAM 2014 (2014)","DOI":"10.1109\/ASONAM.2014.6921639"},{"key":"8_CR11","unstructured":"Ha, D., Dai, A., Le, Q.V.: Hypernetworks. In: ICLR 2016 (2016)"},{"issue":"6789","key":"8_CR12","doi-asserted-by":"publisher","first-page":"947","DOI":"10.1038\/35016072","volume":"405","author":"RH Hahnloser","year":"2000","unstructured":"Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947\u2013951 (2000)","journal-title":"Nature"},{"issue":"4","key":"8_CR13","first-page":"1","volume":"5","author":"FM Harper","year":"2015","unstructured":"Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1\u201319 (2015)","journal-title":"ACM Trans. Interact. Intell. Syst. (TIIS)"},{"key":"8_CR14","doi-asserted-by":"crossref","unstructured":"Hu, L., Sun, A., Liu, Y.: Your neighbors affect your ratings: on geographical neighborhood influence to rating prediction. In: SIGIR 2014 (2014)","DOI":"10.1145\/2600428.2609593"},{"key":"8_CR15","unstructured":"Jiang, Y., Kone\u010dn\u1ef3, J., Rush, K., Kannan, S.: Improving federated learning personalization via model agnostic meta learning. In: International Workshop on Federated Learning for User Privacy and Data Confidentiality in conjunction with NeurIPS 2019 (2019)"},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Lin, Y., et al.: Meta matrix factorization for federated rating predictions. In: SIGIR 2020 (2020)","DOI":"10.1145\/3397271.3401081"},{"key":"8_CR17","unstructured":"Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579\u20132605 (2008)"},{"key":"8_CR18","doi-asserted-by":"publisher","unstructured":"M\u00fcllner, P., Kowald, D., Lex, E.: User Groups for Robustness of Meta Matrix Factorization Against Decreasing Privacy Budgets (2020). https:\/\/doi.org\/10.5281\/zenodo.4031011","DOI":"10.5281\/zenodo.4031011"},{"key":"8_CR19","doi-asserted-by":"crossref","unstructured":"Schedl, M., Bauer, C.: Distance-and rank-based music mainstreaminess measurement. In: UMAP 2017 (2017)","DOI":"10.1145\/3099023.3099098"},{"key":"8_CR20","unstructured":"Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS 2017 (2017)"},{"issue":"1","key":"8_CR21","doi-asserted-by":"publisher","first-page":"79","DOI":"10.3354\/cr030079","volume":"30","author":"CJ Willmott","year":"2005","unstructured":"Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30(1), 79\u201382 (2005)","journal-title":"Climate Res."}],"container-title":["Lecture Notes in Computer Science","Advances in Information Retrieval"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-72240-1_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T11:36:58Z","timestamp":1617277018000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-72240-1_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030722395","9783030722401"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-72240-1_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"30 March 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECIR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Information Retrieval","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 March 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 April 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"43","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecir2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.ecir2021.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"436","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"50","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"39","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"11% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}