{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:35:59Z","timestamp":1742913359974,"version":"3.40.3"},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030722395"},{"type":"electronic","value":"9783030722401"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-72240-1_38","type":"book-chapter","created":{"date-parts":[[2021,3,29]],"date-time":"2021-03-29T12:02:43Z","timestamp":1617019363000},"page":"376-383","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Fine-Tuning BERT for COVID-19 Domain Ad-Hoc IR by Using Pseudo-qrels"],"prefix":"10.1007","author":[{"given":"Xabier","family":"Saralegi","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1765-0555","authenticated-orcid":false,"given":"I\u00f1aki","family":"San Vicente","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,30]]},"reference":[{"key":"38_CR1","doi-asserted-by":"publisher","unstructured":"Alsentzer, E., Murphy, J., Boag, W., Weng, W.H., Jin, D., Naumann, T., McDermott, M.: Publicly available clinical BERT embeddings. In: Proceedings of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, Minnesota, USA, pp. 72\u201378. Association for Computational Linguistics, June 2019. https:\/\/doi.org\/10.18653\/v1\/W19-1909. https:\/\/www.aclweb.org\/anthology\/W19-1909","DOI":"10.18653\/v1\/W19-1909"},{"key":"38_CR2","doi-asserted-by":"crossref","unstructured":"Asadi, N., Metzler, D., Elsayed, T., Lin, J.: Pseudo test collections for learning web search ranking functions. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1073\u20131082 (2011)","DOI":"10.1145\/2009916.2010058"},{"key":"38_CR3","doi-asserted-by":"crossref","unstructured":"Dehghani, M., Zamani, H., Severyn, A., Kamps, J., Croft, W.B.: Neural ranking models with weak supervision. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 65\u201374 (2017)","DOI":"10.1145\/3077136.3080832"},{"key":"38_CR4","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)"},{"key":"38_CR5","doi-asserted-by":"crossref","unstructured":"Dietz, L., Verma, M., Radlinski, F., Craswell, N.: TREC complex answer retrieval overview. In: TREC (2017)","DOI":"10.6028\/NIST.SP.500-324.car-overview"},{"key":"38_CR6","doi-asserted-by":"crossref","unstructured":"Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-hoc retrieval. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 55\u201364 (2016)","DOI":"10.1145\/2983323.2983769"},{"key":"38_CR7","doi-asserted-by":"crossref","unstructured":"Hui, K., Yates, A., Berberich, K., De Melo, G.: CO-PACRR: a context-aware neural IR model for ad-hoc retrieval. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 279\u2013287 (2018)","DOI":"10.1145\/3159652.3159689"},{"key":"38_CR8","unstructured":"MacAvaney, S., Hui, K., Yates, A.: An approach for weakly-supervised deep information retrieval. arXiv preprint arXiv:1707.00189 (2017)"},{"key":"38_CR9","doi-asserted-by":"crossref","unstructured":"Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and distributed representations of text for web search. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1291\u20131299 (2017)","DOI":"10.1145\/3038912.3052579"},{"key":"38_CR10","unstructured":"Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng, L.: Ms marco: a human-generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268 (2016)"},{"key":"38_CR11","unstructured":"Nogueira, R., Cho, K.: Passage re-ranking with BERT. arXiv preprint arXiv:1901.04085 (2019)"},{"key":"38_CR12","doi-asserted-by":"crossref","unstructured":"Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st annual international ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275\u2013281 (1998)","DOI":"10.1145\/290941.291008"},{"key":"38_CR13","unstructured":"Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance tests for information retrieval evaluation. In: CIKM 2007: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, New York, NY, USA, pp. 623\u2013632. ACM (2007). http:\/\/doi.acm.org\/10.1145\/1321440.1321528"},{"key":"38_CR14","unstructured":"Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language model-based search engine for complex queries. In: Proceedings of the International Conference on Intelligent Analysis, vol. 2, pp. 2\u20136. Citeseer (2005)"},{"key":"38_CR15","unstructured":"Wang, L.L., et al.: Cord-19: the covid-19 open research dataset. ArXiv (2020)"},{"key":"38_CR16","doi-asserted-by":"crossref","unstructured":"Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neural ad-hoc ranking with kernel pooling. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 55\u201364 (2017)","DOI":"10.1145\/3077136.3080809"},{"key":"38_CR17","unstructured":"Yang, W., Zhang, H., Lin, J.: Simple applications of BERT for ad hoc document retrieval. arXiv preprint arXiv:1903.10972 (2019)"},{"key":"38_CR18","doi-asserted-by":"crossref","unstructured":"Zhang, K., Xiong, C., Liu, Z., Liu, Z.: Selective weak supervision for neural information retrieval. In: Proceedings of The Web Conference 2020, pp. 474\u2013485 (2020)","DOI":"10.1145\/3366423.3380131"}],"container-title":["Lecture Notes in Computer Science","Advances in Information Retrieval"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-72240-1_38","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,27]],"date-time":"2024-08-27T01:26:57Z","timestamp":1724722017000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-72240-1_38"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030722395","9783030722401"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-72240-1_38","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"30 March 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECIR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Information Retrieval","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 March 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 April 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"43","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecir2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.ecir2021.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"436","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"50","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"39","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"11% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}