{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T05:12:19Z","timestamp":1726117939832},"publisher-location":"Cham","reference-count":65,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030715892"},{"type":"electronic","value":"9783030715908"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-71590-8_3","type":"book-chapter","created":{"date-parts":[[2021,3,6]],"date-time":"2021-03-06T15:02:33Z","timestamp":1615042953000},"page":"32-50","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Spatiotemporal Data Cleaning and Knowledge Fusion"],"prefix":"10.1007","author":[{"given":"Huchen","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Mohan","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhaoquan","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Zhihong","family":"Tian","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,7]]},"reference":[{"key":"3_CR1","unstructured":"Singhal, A.: Introducing the knowledge graph: things, not strings. J. Google (2012)"},{"key":"3_CR2","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1016\/j.artint.2012.04.005","volume":"194","author":"B Hachey","year":"2013","unstructured":"Hachey, B., Radford, W., Nothman, J., Honnibal, M., Curran, J.R.: Evaluating entity linking with wikipedia. Artif. Intell. 194, 130\u2013150 (2013)","journal-title":"Artif. Intell."},{"key":"3_CR3","doi-asserted-by":"crossref","unstructured":"Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the: ACM SIGMOD International Conference on Management of Data (SIGMOD 2008), pp. 1247\u20131250. Association for Computing Machinery, New York, NY, USA (2008)","DOI":"10.1145\/1376616.1376746"},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web (WWW 2007). Association for Computing Machinery, New York, NY, USA, pp. 697\u2013706 (2007)","DOI":"10.1145\/1242572.1242667"},{"issue":"10","key":"3_CR5","doi-asserted-by":"publisher","first-page":"2447","DOI":"10.1587\/transinf.2017EDP7378","volume":"101","author":"M Li","year":"2018","unstructured":"Li, M., Li, J., Cheng, S., Sun, Y.: Uncertain rule based method for determining data currency. IEICE Trans. Inf. Syst. 101(10), 2447\u20132457 (2018)","journal-title":"IEICE Trans. Inf. Syst."},{"key":"3_CR6","unstructured":"Australian Government, \u201cSmart city sensor data\" (2017). https:\/\/data.gov.au"},{"key":"3_CR7","unstructured":"Chen, D.: Online retail data set (2015). https:\/\/archive.ics.uci.edu\/ml\/"},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Kolitsas, N., Ganea, O.E., Hofmann, T.: End-to-end neural entity linking. arXiv preprint arXiv:1808.07699 (2018)","DOI":"10.18653\/v1\/K18-1050"},{"key":"3_CR9","doi-asserted-by":"crossref","unstructured":"Le, P., Titov, I.: Improving entity linking by modeling latent relations between mentions. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pp. 1595\u20131604 (2018)","DOI":"10.18653\/v1\/P18-1148"},{"key":"3_CR10","doi-asserted-by":"crossref","unstructured":"Fang, Z., Cao, Y., Li, Q., et al.: Joint entity linking with deep reinforcement learning. In: The World Wide Web Conference, pp. 438\u2013447 (2019)","DOI":"10.1145\/3308558.3313517"},{"key":"3_CR11","unstructured":"Mikolov, T.,Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs\/1301.3781. arXiv:1301.3781 (2013)"},{"issue":"10","key":"3_CR12","first-page":"881","volume":"7","author":"XL Dong","year":"2014","unstructured":"Dong, X.L., Gabrilovich, E., Heitz, G., Horn, W., Murphy, K., Sun, S., Zhang, W.: From data fusion to knowledge fusion. VLDB 7(10), 881\u2013892 (2014)","journal-title":"VLDB"},{"key":"3_CR13","doi-asserted-by":"crossref","unstructured":"Lin, P., Song, Q., Shen, J., Wu, Y.: Discovering graph patterns for fact checking in knowledge graphs. In: DASFAA, pp. 783\u2013801 (2018)","DOI":"10.1007\/978-3-319-91452-7_50"},{"issue":"10","key":"3_CR14","doi-asserted-by":"publisher","first-page":"1195","DOI":"10.14778\/3339490.3339501","volume":"12","author":"H Ma","year":"2019","unstructured":"Ma, H., Alipourlangouri, M., Wu, Y., et al.: Ontology-based entity matching in attributed graphs. Proc. VLDB Endowment 12(10), 1195\u20131207 (2019)","journal-title":"Proc. VLDB Endowment"},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"Kobren, A., Barrio, P., Yakhnenko, O., et al.: Constructing high precision knowledge bases with subjective and factual attributes. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2050\u20132058 (2019)","DOI":"10.1145\/3292500.3330720"},{"key":"3_CR16","unstructured":"Chen, X., Lin, Q., Zhou, D.: Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing. In: International Conference on Machine Learning, pp. 64\u201372 (2013)"},{"issue":"1","key":"3_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1287\/opre.2013.1235","volume":"62","author":"DR Karger","year":"2014","unstructured":"Karger, D.R., Oh, S., Shah, D.: Budget-optimal task allocation for reliable crowdsourcing systems. Oper. Res. 62(1), 1\u201324 (2014)","journal-title":"Oper. Res."},{"key":"3_CR18","first-page":"163","volume":"6","author":"SR Jeffery","year":"2006","unstructured":"Jeffery, S.R., Garofalakis, M., Franklin, M.J.: Adaptive cleaning for RFID data streams. VLDB 6, 163\u2013174 (2006)","journal-title":"VLDB"},{"key":"3_CR19","unstructured":"Li, X., Dong, X.L., Lyons, K., et al.: Truth finding on the deep web: is the problem solved?. arXiv preprint arXiv:1503.00303 (2015)"},{"key":"3_CR20","doi-asserted-by":"crossref","unstructured":"Bohannon, P., Fan, W., Flaster, M., et al.: A cost-based model and effective heuristic for repairing constraints by value modification. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 143\u2013154 (2005)","DOI":"10.1145\/1066157.1066175"},{"key":"3_CR21","doi-asserted-by":"crossref","unstructured":"Song, S., Zhang, A., Wang, J., et al.: SCREEN: stream data cleaning under speed constraints. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 827\u2013841 (2015)","DOI":"10.1145\/2723372.2723730"},{"key":"3_CR22","doi-asserted-by":"crossref","unstructured":"Zheng, Z., Milani, M., Chiang, F.: CurrentClean: spatio-temporal cleaning of stale data. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), 172\u2013183. IEEE (2019)","DOI":"10.1109\/ICDE.2019.00024"},{"key":"3_CR23","volume-title":"Time Series Analysis: Forecasting and Control","author":"GEP Box","year":"2015","unstructured":"Box, G.E.P., Jenkins, G.M., Reinsel, G.C., et al.: Time Series Analysis: Forecasting and Control. John Wiley & Sons, Hoboken (2015)"},{"key":"3_CR24","doi-asserted-by":"crossref","unstructured":"Brillinger, D.R.: Time Series: Data Analysis and Theory. Siam (1981)","DOI":"10.2307\/2530198"},{"issue":"1\u20132","key":"3_CR25","doi-asserted-by":"publisher","first-page":"229","DOI":"10.1016\/j.jsv.2004.10.013","volume":"286","author":"G Park","year":"2005","unstructured":"Park, G., Rutherford, A.C., Sohn, H., et al.: An outlier analysis framework for impedance-based structural health monitoring. J. Sound Vibr. 286(1\u20132), 229\u2013250 (2005)","journal-title":"J. Sound Vibr."},{"issue":"12","key":"3_CR26","doi-asserted-by":"publisher","first-page":"1197","DOI":"10.14778\/2994509.2994535","volume":"9","author":"P Konda","year":"2016","unstructured":"Konda, P., Das, S., Suganthan, G.P., et al.: Magellan: toward building entity matching management systems. Proc. VLDB Endowment 9(12), 1197\u20131208 (2016)","journal-title":"Proc. VLDB Endowment"},{"issue":"1\u20132","key":"3_CR27","doi-asserted-by":"publisher","first-page":"244","DOI":"10.14778\/1920841.1920875","volume":"3","author":"H Zhang","year":"2010","unstructured":"Zhang, H., Diao, Y., Immerman, N.: Recognizing patterns in streams with imprecise timestamps. Proc. VLDB Endowment 3(1\u20132), 244\u2013255 (2010)","journal-title":"Proc. VLDB Endowment"},{"key":"3_CR28","doi-asserted-by":"crossref","unstructured":"Yakout, M., Berti-\u00e9quille, L., Elmagarmid, A.K.: Don\u2019t be SCAREd: use SCalable Automatic REpairing with maximal likelihood and bounded changes. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 553\u2013564 (2013)","DOI":"10.1145\/2463676.2463706"},{"key":"3_CR29","doi-asserted-by":"crossref","unstructured":"Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509\u2013518 (2008)","DOI":"10.1145\/1458082.1458150"},{"key":"3_CR30","unstructured":"Chen, Z., Ji, H.: Collaborative ranking: a case study on entity linking. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pp. 771\u2013781 (2011)"},{"key":"3_CR31","unstructured":"Dredze, M., McNamee, P., Rao, D., et al.: Entity disambiguation for knowledge base population. In: Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, pp. 277\u2013285 (2010)"},{"key":"3_CR32","doi-asserted-by":"crossref","unstructured":"Tan, C., Wei, F., Ren, P., et al.: Entity linking for queries by searching Wikipedia sentences. arXiv preprint arXiv:1704.02788 (2017)","DOI":"10.18653\/v1\/D17-1007"},{"issue":"4","key":"3_CR33","doi-asserted-by":"publisher","first-page":"459","DOI":"10.3233\/SW-170273","volume":"9","author":"Z Guo","year":"2018","unstructured":"Guo, Z., Barbosa, D.: Robust named entity disambiguation with random walks. Semant. Web 9(4), 459\u2013479 (2018)","journal-title":"Semant. Web"},{"key":"3_CR34","doi-asserted-by":"crossref","unstructured":"Feng, J., Huang, M., Zhao, L., et al.: Reinforcement learning for relation classification from noisy data. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)","DOI":"10.1609\/aaai.v32i1.12063"},{"key":"3_CR35","doi-asserted-by":"crossref","unstructured":"Zhang, T., Huang, M., Zhao, L.: Learning structured representation for text classification via reinforcement learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)","DOI":"10.1609\/aaai.v32i1.12047"},{"issue":"3\u20134","key":"3_CR36","doi-asserted-by":"publisher","first-page":"332","DOI":"10.1016\/j.rse.2004.03.014","volume":"91","author":"J Chen","year":"2004","unstructured":"Chen, J., J\u00f6nsson, P., Tamura, M., et al.: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 91(3\u20134), 332\u2013344 (2004)","journal-title":"Remote Sens. Environ."},{"issue":"10","key":"3_CR37","doi-asserted-by":"publisher","first-page":"1046","DOI":"10.14778\/3115404.3115410","volume":"10","author":"A Zhang","year":"2017","unstructured":"Zhang, A., Song, S., Wang, J., et al.: Time series data cleaning: from anomaly detection to anomaly repairing. Proc. VLDB Endowment 10(10), 1046\u20131057 (2017)","journal-title":"Proc. VLDB Endowment"},{"key":"3_CR38","unstructured":"Chu, X., Ilyas, I.F., Papotti, P.: Holistic data cleaning: putting violations into context. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 458\u2013469. IEEE (2013)"},{"issue":"2","key":"3_CR39","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1016\/j.datak.2009.10.003","volume":"69","author":"H K\u00f6pcke","year":"2010","unstructured":"K\u00f6pcke, H., Rahm, E.: Frameworks for entity matching: a comparison. Data Knowl. Eng. 69(2), 197\u2013210 (2010)","journal-title":"Data Knowl. Eng."},{"key":"3_CR40","doi-asserted-by":"crossref","unstructured":"Brunner, U., Stockinger, K.: Entity matching on unstructured data: an active learning approach. In: 2019 6th Swiss Conference on Data Science (SDS), pp. 97\u2013102. IEEE (2019)","DOI":"10.1109\/SDS.2019.00006"},{"key":"3_CR41","doi-asserted-by":"crossref","unstructured":"Mudgal, S., Li, H., Rekatsinas, T., et al.: Deep learning for entity matching: a design space exploration. In: Proceedings of the 2018 International Conference on Management of Data, pp. 19\u201334 (2018)","DOI":"10.1145\/3183713.3196926"},{"key":"3_CR42","unstructured":"Meng, R., Xin, H., Chen, L., et al.: Subjective knowledge acquisition and enrichment powered by crowdsourcing. arXiv preprint arXiv:1705.05720 (2017)"},{"key":"3_CR43","unstructured":"Welinder, P., Branson, S., Perona, P., et al.: The multidimensional wisdom of crowds. In: Advances in Neural Information Processing Systems, pp. 2424\u20132432 (2010)"},{"key":"3_CR44","unstructured":"Kajino, H., Tsuboi, Y., Sato, I., et al.: Learning from crowds and experts. In: Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)"},{"key":"3_CR45","doi-asserted-by":"crossref","unstructured":"Liang, D., Altosaar, J., Charlin, L., et al.: Factorization meets the item embedding: regularizing matrix factorization with item co-occurrence. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 59\u201366 (2016)","DOI":"10.1145\/2959100.2959182"},{"key":"3_CR46","doi-asserted-by":"crossref","unstructured":"Gal\u00e1rraga, L., Razniewski, S., Amarilli, A., et al.: Predicting completeness in knowledge bases. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 375\u2013383 (2017)","DOI":"10.1145\/3018661.3018739"},{"key":"3_CR47","doi-asserted-by":"crossref","unstructured":"Qi, F., Chang, L., Sun, M., et al.: Towards building a multilingual sememe knowledge base: predicting sememes for BabelNet synsets. arXiv preprint arXiv:1912.01795 (2019)","DOI":"10.1609\/aaai.v34i05.6386"},{"key":"3_CR48","doi-asserted-by":"crossref","unstructured":"Qi, F., Huang, J., Yang, C., et al.: Modeling semantic compositionality with sememe knowledge. arXiv preprint arXiv:1907.04744 (2019)","DOI":"10.18653\/v1\/P19-1571"},{"key":"3_CR49","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"787","DOI":"10.1007\/978-3-030-32233-5_61","volume-title":"Natural Language Processing and Chinese Computing","author":"S Liu","year":"2019","unstructured":"Liu, S., Xu, J., Ren, X.: Evaluating semantic rationality of a sentence: a sememe-word-matching neural network based on HowNet. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11838, pp. 787\u2013800. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32233-5_61"},{"key":"3_CR50","unstructured":"Keogh, E., Chu, S., Hart, D., et al.: An online algorithm for segmenting time series. In: Proceedings IEEE International Conference on Data Mining, vol. 2001, pp. 289\u2013296. IEEE (2001)"},{"issue":"4","key":"3_CR51","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1016\/j.ijforecast.2006.03.005","volume":"22","author":"ES Gardner Jr","year":"2006","unstructured":"Gardner Jr., E.S.: Exponential smoothing: the state of the art-Part II. Int. J. Forecast. 22(4), 637\u2013666 (2006)","journal-title":"Int. J. Forecast."},{"key":"3_CR52","doi-asserted-by":"crossref","unstructured":"Rekatsinas, T., Chu, X., Ilyas, I.F., et al.: HoloClean: holistic data repairs with probabilistic inference. arXiv preprint arXiv:1702.00820 (2017)","DOI":"10.14778\/3137628.3137631"},{"key":"3_CR53","doi-asserted-by":"crossref","unstructured":"Mayfield, C., Neville, J., Prabhakar, S.: ERACER: a database approach for statistical inference and data cleaning. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 75\u201386 (2010)","DOI":"10.1145\/1807167.1807178"},{"key":"3_CR54","doi-asserted-by":"crossref","unstructured":"Krishnan, S., Franklin, M.J., Goldberg, K., et al.: ActiveClean: an interactive data cleaning framework for modern machine learning. In: Proceedings of the 2016 International Conference on Management of Data, pp. 2117\u20132120 (2016)","DOI":"10.1145\/2882903.2899409"},{"issue":"3","key":"3_CR55","doi-asserted-by":"publisher","first-page":"812","DOI":"10.1007\/s10878-015-9904-8","volume":"32","author":"M Li","year":"2016","unstructured":"Li, M., Li, J.: A minimized-rule based approach for improving data currency. J. Comb. Optim. 32(3), 812\u2013841 (2016)","journal-title":"J. Comb. Optim."},{"key":"3_CR56","unstructured":"Ngomo, A.-C.N., Auer, S.: LIMES: a time-efficient approach for large-scale link discovery on the web of data. In: Proceedings of the Twenty-Second international joint conference on Artificial Intelligence(IJCAI 2011), pp. 2312\u20132317 (2011)"},{"key":"3_CR57","unstructured":"Scharffe, F., Liu, Y., Zhou, C., RDF-AI: an architecture for RDF datasets matching, fusion and interlink. In: Proceeding of IJCAI, : Workshop on Identity, Reference, and Knowledge Representation (IR-KR). Pasadena (CA US), vol. 2009, p. 23 (2009)"},{"key":"3_CR58","doi-asserted-by":"crossref","unstructured":"Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge embeddings. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 4258\u20134264 (2017)","DOI":"10.24963\/ijcai.2017\/595"},{"key":"3_CR59","doi-asserted-by":"crossref","unstructured":"Zhang, Q., Sun, Z., Hu, W., et al.: Multi-view knowledge graph embedding for entity alignment. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp. 5429\u20135435 (2017)","DOI":"10.24963\/ijcai.2019\/754"},{"key":"3_CR60","doi-asserted-by":"crossref","unstructured":"Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs using attribute embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 297\u2013304 (2019)","DOI":"10.1609\/aaai.v33i01.3301297"},{"key":"3_CR61","unstructured":"Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26, pp. 2787\u20132795 (2013)"},{"key":"3_CR62","doi-asserted-by":"crossref","unstructured":"Wu, Y., Liu, X., Feng, Y., et al.: Relation-aware entity alignment for heterogeneous knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 5278\u20135284 (2019)","DOI":"10.24963\/ijcai.2019\/733"},{"key":"3_CR63","doi-asserted-by":"crossref","unstructured":"Wang, Z., Lv, Q., Lan, X., et al.: Cross-lingual knowledge graph alignment via graph convolutional networks. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 349\u2013357 (2018)","DOI":"10.18653\/v1\/D18-1032"},{"key":"3_CR64","doi-asserted-by":"crossref","unstructured":"Cao, Y., Liu, Z., Li, C., et al.: Multi-channel graph neural network for entity alignment. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1452\u20131461 (2019)","DOI":"10.18653\/v1\/P19-1140"},{"key":"3_CR65","doi-asserted-by":"crossref","unstructured":"Sun, Z., Wang, C., Hu, W., et al.: Knowledge graph alignment network with gated multi-hop neighborhood aggregation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 222\u2013229 (2020)","DOI":"10.1609\/aaai.v34i01.5354"}],"container-title":["Lecture Notes in Computer Science","MDATA: A New Knowledge Representation Model"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-71590-8_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,25]],"date-time":"2024-08-25T14:35:49Z","timestamp":1724596549000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-71590-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030715892","9783030715908"],"references-count":65,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-71590-8_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 March 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}