{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T07:33:26Z","timestamp":1726126406119},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030711863"},{"type":"electronic","value":"9783030711870"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-71187-0_59","type":"book-chapter","created":{"date-parts":[[2021,6,2]],"date-time":"2021-06-02T05:04:54Z","timestamp":1622610294000},"page":"647-656","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":15,"title":["Optimized NASNet for Diagnosis of COVID-19 from Lung CT Images"],"prefix":"10.1007","author":[{"given":"Subrato","family":"Bharati","sequence":"first","affiliation":[]},{"given":"Prajoy","family":"Podder","sequence":"additional","affiliation":[]},{"given":"M. Rubaiyat Hossain","family":"Mondal","sequence":"additional","affiliation":[]},{"given":"Niketa","family":"Gandhi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,6,3]]},"reference":[{"issue":"21","key":"59_CR1","doi-asserted-by":"publisher","first-page":"1969","DOI":"10.1056\/NEJMp2005630","volume":"382","author":"N Lurie","year":"2020","unstructured":"Lurie, N., Saville, M., Hatchett, R., Halton, J.: Developing Covid-19 vaccines at pandemic speed. New Engl. J. Med. 382(21), 1969\u20131973 (2020)","journal-title":"New Engl. J. Med."},{"key":"59_CR2","doi-asserted-by":"crossref","unstructured":"Mondal, M.R.H., Bharati, S., Podder, P., Podder, P.: Data analytics for novel coronavirus disease. Inform. Med. Unlocked, 100374 (2020)","DOI":"10.1016\/j.imu.2020.100374"},{"key":"59_CR3","unstructured":"Bharati, S.: How artificial intelligence impacts businesses in the period of pandemics? J. Int. Acad. Case Stud 26(5), 1\u20132 (2020)"},{"key":"59_CR4","doi-asserted-by":"crossref","unstructured":"Kundu, S., Elhalawani, H., Gichoya, J.W., Kahn, C.E: How Might AI and Chest Imaging Help Unravel COVID-19\u2019s Mysteries? Radiological Society of North America (2020)","DOI":"10.1148\/ryai.2020200053"},{"issue":"4","key":"59_CR5","doi-asserted-by":"publisher","first-page":"e166","DOI":"10.1016\/S2589-7500(20)30054-6","volume":"2","author":"B McCall","year":"2020","unstructured":"McCall, B.: COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread. Lancet Digit. Health 2(4), e166\u2013e167 (2020)","journal-title":"Lancet Digit. Health"},{"key":"59_CR6","unstructured":"Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:161101578 (2016)"},{"key":"59_CR7","doi-asserted-by":"crossref","unstructured":"Rend\u00f3n, A., Mart\u0131nez, F., Hern\u00e1ndez, C.: Deep regression model for predictive control in a vegetable waste carbonization plant. Contemp. Eng. Sci. 10(21), 1047\u20131055 (2017)","DOI":"10.12988\/ces.2017.79107"},{"key":"59_CR8","doi-asserted-by":"crossref","unstructured":"Radhika, K., Devika, K., Aswathi, T., Sreevidya, P., Sowmya, V., Soman, K.P.: Performance analysis of NASNet on unconstrained ear recognition. In: Nature Inspired Computing for Data Science. Springer, pp 57\u201382 (2020)","DOI":"10.1007\/978-3-030-33820-6_3"},{"key":"59_CR9","doi-asserted-by":"crossref","unstructured":"Kassani, S.H., Kassasni, P.H., Wesolowski, M.J., Schneider, K.A.: Deters R automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: A Machine Learning-Based Approach (2020). arXiv preprint arXiv:200410641","DOI":"10.1016\/j.bbe.2021.05.013"},{"key":"59_CR10","doi-asserted-by":"crossref","unstructured":"Acar, E., \u015eAh\u0130N, E., Yilmaz, \u0130.: Improving effectiveness of different deep learning-based models for detecting COVID-19 from computed tomography (CT) images. medRxiv (2020)","DOI":"10.1101\/2020.06.12.20129643"},{"issue":"2","key":"59_CR11","doi-asserted-by":"publisher","first-page":"662","DOI":"10.18517\/ijaseit.10.2.11446","volume":"10","author":"F Mart\u00ednez","year":"2020","unstructured":"Mart\u00ednez, F., Mart\u00ednez, F., Jacinto, E.: Performance evaluation of the NASNet convolutional network in the automatic identification of COVID-19. Int. J. Adv. Sci. Eng. Inform. Technol. 10(2), 662 (2020)","journal-title":"Int. J. Adv. Sci. Eng. Inform. Technol."},{"key":"59_CR12","first-page":"125","volume":"12","author":"S Bharati","year":"2020","unstructured":"Bharati, S., Podder, P., Mondal, M.R.H.: Artificial neural network based breast cancer screening: a comprehensive review. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 12, 125\u2013137 (2020)","journal-title":"Int. J. Comput. Inf. Syst. Ind. Manage. Appl."},{"key":"59_CR13","doi-asserted-by":"crossref","unstructured":"Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 103792 (2020)","DOI":"10.1016\/j.compbiomed.2020.103792"},{"key":"59_CR14","doi-asserted-by":"crossref","unstructured":"Mahmud, T., Rahman, M.A., Fattah, S.A.: CovXNet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Comput. Biol. Med. 122, 103869 (2020)","DOI":"10.1016\/j.compbiomed.2020.103869"},{"key":"59_CR15","doi-asserted-by":"crossref","unstructured":"Khan, A.I., Shah, J.L., Bhat, M.M.: Coronet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Meth. Programs Biomed. 196, 105581 (2020)","DOI":"10.1016\/j.cmpb.2020.105581"},{"key":"59_CR16","doi-asserted-by":"crossref","unstructured":"To\u011fa\u00e7ar, M., Ergen B, C\u00f6mert, Z.: COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med. 121, 103805 (2020)","DOI":"10.1016\/j.compbiomed.2020.103805"},{"key":"59_CR17","unstructured":"Nisar, Z.: COVID-19. (2020). https:\/\/github.com\/zeeshannisar\/COVID-19. Accessed 12 Oct 2020"},{"key":"59_CR18","doi-asserted-by":"crossref","unstructured":"Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern. pp 8697\u20138710 (2018)","DOI":"10.1109\/CVPR.2018.00907"},{"key":"59_CR19","doi-asserted-by":"crossref","unstructured":"Bharati, S., Podder, P., Mondal, M.R.H.: Hybrid deep learning for detecting lung diseases from X-ray images. Inform. Med. Unlocked, 20 100391 (2020)","DOI":"10.1016\/j.imu.2020.100391"},{"key":"59_CR20","doi-asserted-by":"publisher","unstructured":"Podder, P., Khamparia, A., Mondal, M.R.H., Rahman, M.A., Bharati, S.: Forecasting the Spread of COVID-19 and ICU Requirements. Preprints, 2021030447 (2021). https:\/\/doi.org\/10.20944\/preprints202103.0447.v1","DOI":"10.20944\/preprints202103.0447.v1"}],"container-title":["Advances in Intelligent Systems and Computing","Intelligent Systems Design and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-71187-0_59","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,29]],"date-time":"2022-12-29T10:52:43Z","timestamp":1672311163000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-71187-0_59"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030711863","9783030711870"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-71187-0_59","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"3 June 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ISDA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Systems Design and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 December 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"isda2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.mirlabs.net\/isda20\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}