{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T07:32:58Z","timestamp":1726126378460},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030711863"},{"type":"electronic","value":"9783030711870"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-71187-0_23","type":"book-chapter","created":{"date-parts":[[2021,6,2]],"date-time":"2021-06-02T01:04:54Z","timestamp":1622595894000},"page":"247-257","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Deep Learning with Real-Time Inference for Human Detection in Search and Rescue"],"prefix":"10.1007","author":[{"given":"Ra\u00fal Llasag","family":"Rosero","sequence":"first","affiliation":[]},{"given":"Carlos","family":"Grilo","sequence":"additional","affiliation":[]},{"given":"Catarina","family":"Silva","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,6,3]]},"reference":[{"key":"23_CR1","doi-asserted-by":"publisher","unstructured":"Rodin, C., et al.: Object classification in thermal images using convolutional neural networks for search and rescue missions with unmanned aerial systems. In: IEEE 2018 International Joint Conference on Neural Networks (IJCNN) (2018). https:\/\/doi.org\/10.1109\/IJCNN.2018.8489465","DOI":"10.1109\/IJCNN.2018.8489465"},{"key":"23_CR2","doi-asserted-by":"publisher","unstructured":"Yong, S., Yeong, Y.: Human object detection in forest with DL based on drone\u2019s vision. In: 4th International Conference on Computer and Information Sciences (ICCOINS). IEEE (2018). https:\/\/doi.org\/10.1109\/ICCOINS.2018.8510564","DOI":"10.1109\/ICCOINS.2018.8510564"},{"key":"23_CR3","doi-asserted-by":"publisher","first-page":"3542","DOI":"10.3390\/s19163542","volume":"19","author":"E Lygouras","year":"2019","unstructured":"Lygouras, E., et al.: Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations. Sensors 19, 3542 (2019). https:\/\/doi.org\/10.3390\/s19163542","journal-title":"Sensors"},{"key":"23_CR4","doi-asserted-by":"crossref","unstructured":"Tan, C., Sun, F., Kong, T., Zhang, W., Chang, C., Liu, C.: A survey on deep transfer learning (2018). arXiv:1808.01974v1","DOI":"10.1007\/978-3-030-01424-7_27"},{"key":"23_CR5","doi-asserted-by":"publisher","unstructured":"Blondel, P., Potelle, A., P\u00e9gard, C., Lozano, R.: Fast and viewpoint robust human detection for SAR operations. In: IEEE International Symposium on Safety, Security, and Rescue Robotics, Hokkaido, pp. 2374\u20133247 (2014). https:\/\/doi.org\/10.1109\/SSRR.2014.7017675","DOI":"10.1109\/SSRR.2014.7017675"},{"key":"23_CR6","doi-asserted-by":"publisher","unstructured":"Rudol, P., Doherty, P.: Human body detection and geolocalization for UAV search and rescue missions using color and thermal imagery. In: IEEE Aerospace Conference, Big Sky, pp. 1095\u2013323X (2008). https:\/\/doi.org\/10.1109\/AERO.2008.4526559","DOI":"10.1109\/AERO.2008.4526559"},{"issue":"7","key":"23_CR7","doi-asserted-by":"publisher","first-page":"2444","DOI":"10.3390\/s18072244","volume":"18","author":"D Oliveira","year":"2018","unstructured":"Oliveira, D., Wehrmeister, M.: Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV. Sensors 18(7), 2444 (2018). https:\/\/doi.org\/10.3390\/s18072244","journal-title":"Sensors"},{"key":"23_CR8","doi-asserted-by":"crossref","unstructured":"Zhang, P., Zhong, Y., Li, X.: SlimYOLOv3: narrower, faster and better for real-time (2019). arXiv:1907.11093v1","DOI":"10.1109\/ICCVW.2019.00011"},{"key":"23_CR9","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN (2018). arXiv:1703.06870v3","DOI":"10.1109\/ICCV.2017.322"},{"key":"23_CR10","doi-asserted-by":"crossref","unstructured":"Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.: Single shot multiBox detector (2015). arXiv:1512.02325v5","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"23_CR11","doi-asserted-by":"publisher","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.91.","DOI":"10.1109\/CVPR.2016.91."},{"key":"23_CR12","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2015), Advances in Neural Information Processing Systems, vol. 28 (2015)"},{"key":"23_CR13","doi-asserted-by":"publisher","unstructured":"Llasag, R., Marcillo, D., Grilo, C., Silva, C.: Human detection for search and rescue applications with UAVs and mixed reality interfaces. In: 14th Iberian Conference on Information Systems and Technologies (CISTI), pp. 2166\u20130727 (2019). https:\/\/doi.org\/10.23919\/CISTI.2019.8760811","DOI":"10.23919\/CISTI.2019.8760811"},{"key":"23_CR14","unstructured":"Khalaf, A., et al.: An architecture for simulating drones in mixed reality games to explore future search and rescue scenarios. In: Proceedings of the 15th International Conference on Information Systems, pp. 971\u2013982 (2018)"},{"key":"23_CR15","doi-asserted-by":"publisher","unstructured":"Lin, T., et al.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, pp. 1063\u20136919 (2017). https:\/\/doi.org\/10.1109\/CVPR.2017.106","DOI":"10.1109\/CVPR.2017.106"},{"key":"23_CR16","unstructured":"Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement (2018). arXiv:1804.02767v1"},{"key":"23_CR17","doi-asserted-by":"crossref","unstructured":"Lin, T., et al.: Microsoft COCO: common objects in context. In: European Conference on Computer Vision, LNCS, vol. 8693, pp. 740\u2013755 (2014)","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"23_CR18","unstructured":"Sonntag, D., et al.: Fine-tuning deep CNN models on specific MS COCO categories (2017). arXiv:1709.01476v1"},{"issue":"3","key":"23_CR19","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., Berg, A.C., Li, F.-F.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vision"},{"issue":"1","key":"23_CR20","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1007\/s11263-014-0733-5","volume":"111","author":"M Everingham","year":"2015","unstructured":"Everingham, M., et al.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98\u2013136 (2015)","journal-title":"Int. J. Comput. Vision"},{"key":"23_CR21","unstructured":"Luo, J.H., Wu, J.: An Entropy-based Pruning Method for CNN Compression (2018). arXiv:1706.05791"},{"key":"23_CR22","doi-asserted-by":"crossref","unstructured":"Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural networks for mobile devices. In: IEEE Conference on Computer Vision and Pattern Recognition (2016). arXiv:1512.06473v3","DOI":"10.1109\/CVPR.2016.521"},{"issue":"1","key":"23_CR23","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1016\/j.ins.2019.05.069","volume":"500","author":"B Biswas","year":"2019","unstructured":"Biswas, B., Bhattacharyya, S., Platos, J., Snasel, V.: Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets. Inf. Sci. 500(1), 67\u201386 (2019). https:\/\/doi.org\/10.1016\/j.ins.2019.05.069","journal-title":"Inf. Sci."},{"key":"23_CR24","unstructured":"ZhuEmail, P., et al.: VisDrone-DET2018: the vision meets drone object detection in image challenge results. In: Computer Vision - ECCV 2018 Workshops, LNCS, vol. 11133, pp. 437\u2013468 (2018)"},{"key":"23_CR25","doi-asserted-by":"crossref","unstructured":"Lu, Z., Deb, K., Boddeti, V.N.: MUXConv: Information Multiplexing in Convolutional Neural Networks (2020). arXiv:2003.13880","DOI":"10.1109\/CVPR42600.2020.01206"}],"container-title":["Advances in Intelligent Systems and Computing","Intelligent Systems Design and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-71187-0_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,29]],"date-time":"2022-12-29T05:51:12Z","timestamp":1672293072000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-71187-0_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030711863","9783030711870"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-71187-0_23","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"3 June 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ISDA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Systems Design and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 December 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"isda2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.mirlabs.net\/isda20\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}