{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T04:42:05Z","timestamp":1726116125574},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030698850"},{"type":"electronic","value":"9783030698867"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69886-7_9","type":"book-chapter","created":{"date-parts":[[2021,2,19]],"date-time":"2021-02-19T21:18:56Z","timestamp":1613769536000},"page":"106-119","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Attributed Heterogeneous Network Embedding for Link Prediction"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6031-4656","authenticated-orcid":false,"given":"Tingting","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0452-4536","authenticated-orcid":false,"given":"Weiwei","family":"Yuan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8448-9020","authenticated-orcid":false,"given":"Donghai","family":"Guan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,20]]},"reference":[{"key":"9_CR1","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1007\/978-1-4419-8462-3_5","volume-title":"Social Network Data Analytics","author":"S Bhagat","year":"2011","unstructured":"Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 115\u2013148. Springer, Boston (2011). https:\/\/doi.org\/10.1007\/978-1-4419-8462-3_5"},{"key":"9_CR2","doi-asserted-by":"crossref","unstructured":"Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891\u2013900 (2015)","DOI":"10.1145\/2806416.2806512"},{"key":"9_CR3","doi-asserted-by":"crossref","unstructured":"Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)","DOI":"10.1609\/aaai.v30i1.10179"},{"key":"9_CR4","doi-asserted-by":"crossref","unstructured":"Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J.: Representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1358\u20131368 (2019)","DOI":"10.1145\/3292500.3330964"},{"key":"9_CR5","doi-asserted-by":"crossref","unstructured":"Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 119\u2013128 (2015)","DOI":"10.1145\/2783258.2783296"},{"issue":"5","key":"9_CR6","doi-asserted-by":"publisher","first-page":"833","DOI":"10.1109\/TKDE.2018.2849727","volume":"31","author":"P Cui","year":"2018","unstructured":"Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31(5), 833\u2013852 (2018)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"9_CR7","doi-asserted-by":"crossref","unstructured":"Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135\u2013144 (2017)","DOI":"10.1145\/3097983.3098036"},{"key":"9_CR8","doi-asserted-by":"crossref","unstructured":"Fan, S., Shi, C., Wang, X.: Abnormal event detection via heterogeneous information network embedding. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1483\u20131486 (2018)","DOI":"10.1145\/3269206.3269281"},{"issue":"3\u20135","key":"9_CR9","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.physrep.2009.11.002","volume":"486","author":"S Fortunato","year":"2010","unstructured":"Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3\u20135), 75\u2013174 (2010)","journal-title":"Phys. Rep."},{"key":"9_CR10","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1016\/j.knosys.2018.03.022","volume":"151","author":"P Goyal","year":"2018","unstructured":"Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78\u201394 (2018)","journal-title":"Knowl.-Based Syst."},{"key":"9_CR11","doi-asserted-by":"crossref","unstructured":"Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855\u2013864 (2016)","DOI":"10.1145\/2939672.2939754"},{"key":"9_CR12","unstructured":"Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 (2017)"},{"key":"9_CR13","doi-asserted-by":"crossref","unstructured":"Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 731\u2013739 (2017)","DOI":"10.1145\/3018661.3018667"},{"issue":"7","key":"9_CR14","doi-asserted-by":"publisher","first-page":"1019","DOI":"10.1002\/asi.20591","volume":"58","author":"D Liben-Nowell","year":"2007","unstructured":"Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019\u20131031 (2007)","journal-title":"J. Am. Soc. Inform. Sci. Technol."},{"key":"9_CR15","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1016\/j.inffus.2019.01.005","volume":"50","author":"M Liu","year":"2019","unstructured":"Liu, M., Liu, J., Chen, Y., Wang, M., Chen, H., Zheng, Q.: AHNG: representation learning on attributed heterogeneous network. Inf. Fusion 50, 221\u2013230 (2019)","journal-title":"Inf. Fusion"},{"key":"9_CR16","doi-asserted-by":"crossref","unstructured":"Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701\u2013710 (2014)","DOI":"10.1145\/2623330.2623732"},{"issue":"2","key":"9_CR17","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1109\/TKDE.2018.2833443","volume":"31","author":"C Shi","year":"2018","unstructured":"Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357\u2013370 (2018)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"9_CR18","doi-asserted-by":"crossref","unstructured":"Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th International Conference on World Wide Web, pp. 287\u2013297 (2016)","DOI":"10.1145\/2872427.2883041"},{"key":"9_CR19","doi-asserted-by":"crossref","unstructured":"Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1165\u20131174 (2015)","DOI":"10.1145\/2783258.2783307"},{"key":"9_CR20","doi-asserted-by":"crossref","unstructured":"Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067\u20131077 (2015)","DOI":"10.1145\/2736277.2741093"},{"key":"9_CR21","doi-asserted-by":"crossref","unstructured":"Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks, pp. 990\u2013998 (2008)","DOI":"10.1145\/1401890.1402008"},{"key":"9_CR22","doi-asserted-by":"crossref","unstructured":"Tu, C., Liu, H., Liu, Z., Sun, M.: Cane: context-aware network embedding for relation modeling. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (vol. 1: Long Papers), pp. 1722\u20131731 (2017)","DOI":"10.18653\/v1\/P17-1158"},{"key":"9_CR23","doi-asserted-by":"crossref","unstructured":"Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225\u20131234 (2016)","DOI":"10.1145\/2939672.2939753"},{"key":"9_CR24","doi-asserted-by":"crossref","unstructured":"Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference, pp. 2022\u20132032 (2019)","DOI":"10.1145\/3308558.3313562"},{"key":"9_CR25","unstructured":"Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning with rich text information. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)"},{"key":"9_CR26","doi-asserted-by":"crossref","unstructured":"Zhang, D., Yin, J., Zhu, X., Zhang, C.: Collective classification via discriminative matrix factorization on sparsely labeled networks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 1563\u20131572 (2016)","DOI":"10.1145\/2983323.2983754"},{"key":"9_CR27","doi-asserted-by":"crossref","unstructured":"Zhang, Z., et al.: ANRL: attributed network representation learning via deep neural networks. In: IJCAI 2018, pp. 3155\u20133161 (2018)","DOI":"10.24963\/ijcai.2018\/438"}],"container-title":["Lecture Notes in Computer Science","Knowledge Management and Acquisition for Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69886-7_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,18]],"date-time":"2022-12-18T07:14:37Z","timestamp":1671347677000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-69886-7_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030698850","9783030698867"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69886-7_9","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"20 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PKAW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific Rim Knowledge Acquisition Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Yokohama","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 January 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 January 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pkaw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.pkaw.org\/pkaw2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}