{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T04:42:06Z","timestamp":1726116126695},"publisher-location":"Cham","reference-count":12,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030698850"},{"type":"electronic","value":"9783030698867"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69886-7_7","type":"book-chapter","created":{"date-parts":[[2021,2,19]],"date-time":"2021-02-19T16:18:56Z","timestamp":1613751536000},"page":"83-97","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Stabilizing the Predictive Performance for Ear Emergence in Rice Crops Across Cropping Regions"],"prefix":"10.1007","author":[{"given":"Yasuhiro","family":"Iuchi","sequence":"first","affiliation":[]},{"given":"Hiroshi","family":"Uehara","sequence":"additional","affiliation":[]},{"given":"Yusuke","family":"Fukazawa","sequence":"additional","affiliation":[]},{"given":"Yoshihiro","family":"Kaneta","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,20]]},"reference":[{"unstructured":"Uehara, H., Shinjo, A.: WAGRI - the agricultural big data platform. In: ProceedingE-AGRICULTURE IN ACTION:BIG DATA FOR AGRICULTURE Food and Agriculture Organization of the United Nations and the International Telecommunication Union, pp. 73\u201383 (2019)","key":"7_CR1"},{"issue":"3\u20134","key":"7_CR2","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1016\/S0168-1923(02)00228-9","volume":"115","author":"NA Streck","year":"2003","unstructured":"Streck, N.A., Albert, W., Xue, Q., Stephen, P.B.: Improving predictions of developmental stages in winter wheat: a modified Wang and Engel model. Agric. Forest Meteorol. 115(3\u20134), 139\u2013150 (2003)","journal-title":"Agric. Forest Meteorol."},{"issue":"20","key":"7_CR3","doi-asserted-by":"publisher","first-page":"5849","DOI":"10.1093\/jxb\/eru328","volume":"65","author":"M Bogard","year":"2014","unstructured":"Bogard, M., Ravel, C., Paux, E., Bordes, J.: Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. J. Exp. Bot. 65(20), 5849\u20135865 (2014)","journal-title":"J. Exp. Bot."},{"issue":"6","key":"7_CR4","doi-asserted-by":"publisher","first-page":"e0156571","DOI":"10.1371\/journal.pone.0156571","volume":"11","author":"JH Jeong","year":"2016","unstructured":"Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H.: Random forests for global and regional crop yield predictions. PLoS ONE 11(6), e0156571 (2016)","journal-title":"PLoS ONE"},{"issue":"3","key":"7_CR5","doi-asserted-by":"publisher","first-page":"537","DOI":"10.1016\/j.sjbs.2017.01.024","volume":"24","author":"S Ying-xue","year":"2017","unstructured":"Ying-xue, S., Huan, X., Li-jiao, Y.: Support vector machine-based open crop model (SBOCM): case of rice production in China. Saudi J. Biol. Sci. 24(3), 537\u2013547 (2017)","journal-title":"Saudi J. Biol. Sci."},{"doi-asserted-by":"crossref","unstructured":"Chauhan, Y.S., Ryan, M., Chandra, S., Sadras, V.O.: Accounting for soil moisture improves prediction of flowering time in chickpea and wheat. Nature.com, vol. 7510, no.Scientific Reports, pp. 1\u201311 (2019)","key":"7_CR6","DOI":"10.1038\/s41598-019-43848-6"},{"issue":"20","key":"7_CR7","doi-asserted-by":"publisher","first-page":"5849","DOI":"10.1093\/jxb\/eru328","volume":"65","author":"M Bogard","year":"2014","unstructured":"Bogard, M., et al.: Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. J. Exp. Bot. 65(20), 5849\u20135865 (2014)","journal-title":"J. Exp. Bot."},{"unstructured":"Maeda, Y., Goyodani, T., Nishiuchi, S., Kita, E.: Yield prediction of paddy rice with machine learning. In: Proceeding The 24th Int\u2019l Conf on Parallel and Distributed Processing Techniques and Applications, pp. 361\u2013365 (2018)","key":"7_CR8"},{"key":"7_CR9","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1016\/j.compag.2015.11.018","volume":"121","author":"XE Pantazi","year":"2016","unstructured":"Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L., Mouazen, A.M.: Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 121, 57\u201365 (2016)","journal-title":"Comput. Electron. Agric."},{"issue":"4","key":"7_CR10","doi-asserted-by":"publisher","first-page":"687","DOI":"10.1626\/jcs.59.687","volume":"59","author":"T Horie","year":"1990","unstructured":"Horie, T., Nakagawa, H.: Modelling and prediction of developmental process in rice: I. structure and method of parameter estimation of a model for simulating developmental process toward heading. Crop Sci. Soc. Japan 59(4), 687\u2013695 (1990)","journal-title":"Crop Sci. Soc. Japan"},{"unstructured":"Maeda, Y., Goyodani, T., Nishiuchi, S., Kita, E.: Yield prediction of paddy rice with machine learning. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), pp. 361\u2013365 (2018)","key":"7_CR11"},{"doi-asserted-by":"crossref","unstructured":"Wang, Q., Shwartz, L., Grabarnik, G.Y., Nidd, M., Hwang, J.: Leveraging AI in service automation modeling: from classical AI through deep learning to combination models. In: Proceeding of Int\u2019l Conf on Service-Oriented Computing, vol. 2019, pp. 186\u2013201 (2019)","key":"7_CR12","DOI":"10.1007\/978-3-030-33702-5_14"}],"container-title":["Lecture Notes in Computer Science","Knowledge Management and Acquisition for Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69886-7_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,19]],"date-time":"2021-02-19T16:25:02Z","timestamp":1613751902000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-69886-7_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030698850","9783030698867"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69886-7_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"20 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PKAW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific Rim Knowledge Acquisition Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Yokohama","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 January 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 January 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pkaw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.pkaw.org\/pkaw2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}