{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T04:41:57Z","timestamp":1726116117817},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030698850"},{"type":"electronic","value":"9783030698867"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-69886-7_6","type":"book-chapter","created":{"date-parts":[[2021,2,19]],"date-time":"2021-02-19T21:18:56Z","timestamp":1613769536000},"page":"70-82","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Discriminant Knowledge Extraction from Electrocardiograms for Automated Diagnosis of Myocardial Infarction"],"prefix":"10.1007","author":[{"given":"Girmaw Abebe","family":"Tadesse","sequence":"first","affiliation":[]},{"given":"Komminist","family":"Weldemariam","sequence":"additional","affiliation":[]},{"given":"Hamza","family":"Javed","sequence":"additional","affiliation":[]},{"given":"Yong","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jin","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jiyan","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Tingting","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,20]]},"reference":[{"key":"6_CR1","doi-asserted-by":"crossref","unstructured":"Abubakar, S.M., Saadeh, W., Altaf, M.A.B.: A wearable long-term single-lead ECG processor for early detection of cardiac arrhythmia. In: 2018 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 961\u2013966. IEEE (2018)","DOI":"10.23919\/DATE.2018.8342148"},{"key":"6_CR2","doi-asserted-by":"publisher","first-page":"190","DOI":"10.1016\/j.ins.2017.06.027","volume":"415","author":"UR Acharya","year":"2017","unstructured":"Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 415, 190\u2013198 (2017)","journal-title":"Inf. Sci."},{"key":"6_CR3","doi-asserted-by":"publisher","first-page":"340","DOI":"10.1016\/j.ins.2016.01.082","volume":"345","author":"MM Al Rahhal","year":"2016","unstructured":"Al Rahhal, M.M., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F., Yager, R.R.: Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345, 340\u2013354 (2016)","journal-title":"Inf. Sci."},{"key":"6_CR4","doi-asserted-by":"publisher","first-page":"264","DOI":"10.1109\/RBME.2017.2757953","volume":"10","author":"S Ansari","year":"2017","unstructured":"Ansari, S., et al.: A review of automated methods for detection of myocardial ischemia and infarction using electrocardiogram and electronic health records. IEEE Rev. Biomed. Eng. 10, 264\u2013298 (2017)","journal-title":"IEEE Rev. Biomed. Eng."},{"key":"6_CR5","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/j.patrec.2019.02.016","volume":"122","author":"UB Baloglu","year":"2019","unstructured":"Baloglu, U.B., Talo, M., Yildirim, O., San Tan, R., Acharya, U.R.: Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recogn. Lett. 122, 23\u201330 (2019)","journal-title":"Pattern Recogn. Lett."},{"issue":"16","key":"6_CR6","doi-asserted-by":"publisher","first-page":"1581","DOI":"10.1016\/j.jacc.2012.08.001","volume":"60","author":"JJ Bax","year":"2012","unstructured":"Bax, J.J., et al.: Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 60(16), 1581\u20131598 (2012)","journal-title":"J. Am. Coll. Cardiol."},{"issue":"s1","key":"6_CR7","first-page":"317","volume":"40","author":"R Bousseljot","year":"1995","unstructured":"Bousseljot, R., Kreiseler, D., Schnabel, A.: Nutzung der ekg-signaldatenbank cardiodat der ptb \u00fcber das internet. Biomedizinische Technik\/Biomed. Eng. 40(s1), 317\u2013318 (1995)","journal-title":"Biomedizinische Technik\/Biomed. Eng."},{"issue":"6","key":"6_CR8","doi-asserted-by":"publisher","first-page":"118","DOI":"10.3390\/a12060118","volume":"12","author":"A Darmawahyuni","year":"2019","unstructured":"Darmawahyuni, A., et al.: Deep learning with a recurrent network structure in the sequence modeling of imbalanced data for ECG-rhythm classifier. Algorithms 12(6), 118 (2019)","journal-title":"Algorithms"},{"issue":"9","key":"6_CR9","doi-asserted-by":"publisher","first-page":"1701","DOI":"10.1007\/s10439-009-9740-z","volume":"37","author":"S Dash","year":"2009","unstructured":"Dash, S., Chon, K., Lu, S., Raeder, E.: Automatic real time detection of atrial fibrillation. Ann. Biomed. Eng. 37(9), 1701\u20131709 (2009)","journal-title":"Ann. Biomed. Eng."},{"issue":"2","key":"6_CR10","doi-asserted-by":"publisher","first-page":"403","DOI":"10.4269\/ajtmh.19-0720","volume":"102","author":"HTH Duong","year":"2020","unstructured":"Duong, H.T.H., et al.: Heart rate variability as an indicator of autonomic nervous system disturbance in tetanus. Am. J. Trop. Med. Hyg. 102(2), 403\u2013407 (2020)","journal-title":"Am. J. Trop. Med. Hyg."},{"issue":"23","key":"6_CR11","doi-asserted-by":"publisher","first-page":"e215","DOI":"10.1161\/01.CIR.101.23.e215","volume":"101","author":"AL Goldberger","year":"2000","unstructured":"Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215\u2013e220 (2000)","journal-title":"Circulation"},{"issue":"12","key":"6_CR12","doi-asserted-by":"publisher","first-page":"891","DOI":"10.1097\/00003246-198112000-00029","volume":"9","author":"AL Goldberger","year":"1981","unstructured":"Goldberger, A.L., Gold-berger, E.: Clinical electrocardiography, a simplified approach. Critical Care Med. 9(12), 891\u2013892 (1981)","journal-title":"Critical Care Med."},{"key":"6_CR13","doi-asserted-by":"publisher","first-page":"105138","DOI":"10.1016\/j.cmpb.2019.105138","volume":"185","author":"C Han","year":"2020","unstructured":"Han, C., Shi, L.: Ml-resnet: a novel network to detect and locate myocardial infarction using 12 leads ECG. Comput. Methods Programs Biomed. 185, 105138 (2020)","journal-title":"Comput. Methods Programs Biomed."},{"issue":"9","key":"6_CR14","doi-asserted-by":"publisher","first-page":"488","DOI":"10.3390\/e19090488","volume":"19","author":"M Kumar","year":"2017","unstructured":"Kumar, M., Pachori, R., Acharya, U.: Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 19(9), 488 (2017)","journal-title":"Entropy"},{"key":"6_CR15","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","volume":"42","author":"G Litjens","year":"2017","unstructured":"Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60\u201388 (2017)","journal-title":"Med. Image Anal."},{"issue":"1","key":"6_CR16","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1111\/j.1468-0394.2008.00486.x","volume":"26","author":"S Mehta","year":"2009","unstructured":"Mehta, S., Lingayat, N., Sanghvi, S.: Detection and delineation of P and T waves in 12-lead electrocardiograms. Expert Syst. 26(1), 125\u2013143 (2009)","journal-title":"Expert Syst."},{"issue":"1","key":"6_CR17","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1109\/JBHI.2016.2633287","volume":"21","author":"D Ravi","year":"2017","unstructured":"Ravi, D., Wong, C., Lo, B., Yang, G.Z.: A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE J. Biomed. Health Inf. 21(1), 56\u201364 (2017)","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"6_CR18","doi-asserted-by":"crossref","unstructured":"Strodthoff, N., Strodthoff, C.: Detecting and interpreting myocardial infarction using fully convolutional neural networks. Physiol. Meas. (2018)","DOI":"10.1088\/1361-6579\/aaf34d"},{"key":"6_CR19","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20139 (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"6_CR20","doi-asserted-by":"crossref","unstructured":"Tadesse, G.A., et al.: Multi-modal diagnosis of infectious diseases in the developing world. IEEE J. Biomed. Health Inf. (2020)","DOI":"10.1109\/JBHI.2019.2959839"},{"key":"6_CR21","doi-asserted-by":"crossref","unstructured":"Tadesse, G.A., Javed, H., Weldemariam, K., Zhu, T.: A spectral-longitudinal model for detection of heart attack from12-lead electrocardiogram waveforms. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) to appear (2020)","DOI":"10.1109\/EMBC44109.2020.9176253"},{"key":"6_CR22","doi-asserted-by":"crossref","unstructured":"Tadesse, G.A., et al.: Cardiovascular disease diagnosis using cross-domain transfer learning. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4262\u20134265 (2019)","DOI":"10.1109\/EMBC.2019.8857737"},{"key":"6_CR23","doi-asserted-by":"crossref","unstructured":"Tadesse, G.A., Zhu, T., Thanh, N.L.N., Hung, N.T., Duong, H.T.H., Khanh, T.H., Quang, P.V., Tran, D.D., Yen, L.M., Doorn, H.R.V., andJohn Prince, N.V.H., Javed, H., Kiyasseh, D., Tan, L.V., Thwaites, L., Clifton, D.A.: Severity detection tool for patients with infectious disease. arXiv preprint arXiv:1912.05345 (2019)","DOI":"10.1049\/htl.2019.0030"},{"key":"6_CR24","unstructured":"WHO: Cardiovascular diseases (CVDs). www.who.int\/news-room\/fact-sheets\/detail\/cardiovascular-diseases-(cvds). Accessed 13 Aug 2020"}],"container-title":["Lecture Notes in Computer Science","Knowledge Management and Acquisition for Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-69886-7_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,19]],"date-time":"2021-02-19T21:20:01Z","timestamp":1613769601000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-69886-7_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030698850","9783030698867"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-69886-7_6","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"20 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PKAW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific Rim Knowledge Acquisition Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Yokohama","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 January 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 January 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pkaw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.pkaw.org\/pkaw2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}